Project Icon

llm_rules

RuLES基准测试评估语言模型遵循规则能力

RuLES是一个评估语言模型遵循规则能力的基准测试项目。它提供多种测试场景,如身份验证和问答。项目包括评估脚本、红队测试工具和测试用例可视化工具。研究人员可以评估不同语言模型遵循简单规则的表现,并计算RuLES得分。项目还包含GCG攻击和模型微调的相关代码与指南。

Can LLMs Follow Simple Rules?

As of March 7 2024, we have updated the repo with a revised v2.0 benchmark with new test cases. Please see our updated paper for more details.

[demo] [website] [paper]

This repo contains the code for RuLES: Rule-following Language Evaluation Scenarios, a benchmark for evaluating rule-following in language models.

Updates

  • June 12 2024: Fixed evaluation bugs in SimonSays and Questions scenarios, added support for Google VertexAI API models. Please re-evaluate existing results with python -m llm_rules.scripts.reevaluate.
  • April 25 2024: Moved scripts into llm_rules library.
  • April 25 2024: Added support for chat templates as specified in HuggingFace tokenizer config files and renamed --conv_template to --fastchat_template.

Setup

  1. Install as an editable package:
pip install -e .

To evaluate models with our API wrappers (llm_rules/models/*), install the optional dependencies:

pip install -e .[models]
  1. Create OpenAI/Anthropic/Google API keys and write them to a .env file:
OPENAI_API_KEY=<key>
ANTHROPIC_API_KEY=<key>
GOOGLE_API_KEY=<key>
GCP_PROJECT_ID=<project_id>
  1. Download Llama-2 or other HuggingFace models to a local path using snapshot_download:
>>> from huggingface_hub import snapshot_download
>>> snapshot_download(repo_id="meta-llama/Llama-2-7b-chat-hf", local_dir="/my_models/Llama-2-7b-chat-hf", local_dir_use_symlinks=False)
  1. (Optional) Download and extract evaluation logs here to logs/.

Manual red teaming

Launch an interactive session with:

python -m llm_rules.scripts.manual_redteam --provider openai --model gpt-3.5-turbo-0613 --scenario Authentication --stream

Explore test cases

Visualize test cases with:

python -m llm_rules.scripts.show_testcases --test_suite redteam

Evaluation

Our main evaluation script is llm_rules/scripts/evaluate.py, but since we support lots of evaluation options the code may be hard to follow. Please see llm_rules/scripts/evaluate_simple.py for a simplified version of the evaluation script.

We wrap API calls with unlimited retries for ease of evaluation. You may want to change the retry functionality to suit your needs.

Evaluate on redteam test suite

python -m llm_rules.scripts.evaluate --provider openai --model gpt-3.5-turbo-0613 --test_suite redteam --output_dir logs/redteam

Evaluate a local model using vLLM (GPU required)

When evaluating models using vLLM, evaluate.py launches an API server in-process. Concurrency should be set much higher for vLLM models. Run evaluation with:

python -m llm_rules.scripts.evaluate --provider vllm --model /path/to/model --fastchat_template llama-2 --concurrency 100

Visualize evaluation results

View detailed results on a single test suite with:

python -m llm_rules.scripts.read_results --output_dir logs/redteam/gpt-3.5-turbo-0613

After evaluating on all three test suites (Benign, Basic, and Redteam), compute aggregate RuLES score with:

python -m llm_rules.scripts.read_scores --model_name gpt-3.5-turbo-0613

Finally, you can view responses to individual test casees with:

python -m llm_rules.scripts.show_responses --output_dir logs/redteam/gpt-3.5-turbo-0613 --failed_only

GCG attack (GPU required)

Run the GCG attack with randomized scenario parameters in each iteration:

cd gcg_attack
python main_gcg.py --model /path/to/model --fastchat_template <template_name> --scenario Authentication --behavior withholdsecret

Output logs will be stored in logs/gcg_attack.

To then evaluate models on the direct_request test cases with the resulting GCG suffixes:

python -m llm_rules.scripts.evaluate --provider vllm --model /path/to/model --suffix_dir logs/gcg_attack/<model_name> --test_dir data/direct_request --output_dir logs/direct_request_gcg

Fine-tuning

To reproduce our fine-tuning experiments with Llama-2 7B Chat on the basic_like test cases:

cd finetune
./finetune_llama.sh

We used 4x A100-80G GPUs for fine-tuning Llama-2 7B Chat and Mistral 7B Instruct, you may be able to adjust deepspeed settings to run on smaller/fewer GPUs.

Conversation Templates

When evaluating community models, we mostly rely on FastChat conversation templates (documented in model_templates.yaml) with the exception of a few custom templates added to llm_rules/templates.py.

Citation

@article{mu2023rules,
    title={Can LLMs Follow Simple Rules?},
    author={Norman Mu and Sarah Chen and
            Zifan Wang and Sizhe Chen and David Karamardian and
            Lulwa Aljeraisy and Basel Alomair and
            Dan Hendrycks and David Wagner},
    journal={arXiv},
    year={2023}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号