Project Icon

segformer-b5-finetuned-ade-640-640

SegFormer-b5模型用于ADE20k数据集的语义分割

SegFormer-b5是一个针对ADE20k数据集640x640分辨率微调的语义分割模型。该模型采用层次化Transformer编码器和轻量级MLP解码头,在ADE20K等基准测试中表现优异。模型在ImageNet-1k预训练后,添加解码头并在目标数据集上微调,可应用于多种语义分割任务。

seggpt-vit-large - 基于上下文的单次图像分割解决方案
GithubHuggingfaceSegGPTTransformer图像分割开源项目模型生成模型语义分割
SegGPT项目采用了类似GPT的Transformer模型,它可以在提供输入图像和提示的情况下生成分割掩码,并在COCO-20和FSS-1000数据集上实现了优异的单次图像分割效果。此模型适合用于需要高精度和上下文整合的图像分割应用场景。
VoxFormer - 基于稀疏体素变换器的相机驱动3D语义场景补全方法
3D语义场景补全CVPRGithubVoxFormer开源项目计算机视觉语义分割
VoxFormer是一种基于Transformer的创新框架,仅通过2D图像即可生成完整的3D语义体素。它采用两阶段设计:先从深度估计生成可见占据体素查询,再通过密集化阶段生成完整3D体素。在SemanticKITTI数据集上,VoxFormer在几何和语义方面分别提升了20.0%和18.1%,同时将训练所需GPU内存减少约45%。这为相机驱动的3D语义场景补全任务提供了一个强有力的基线。
efficientnet_b5.sw_in12k_ft_in1k - EfficientNet-加强版:适用于图像分类与特征提取的高效模型
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
EfficientNet模型结合了Swin Transformer的优化策略,经过ImageNet-12k预训练及ImageNet-1k微调,适用于图像识别、特征提取和嵌入生成。该模型使用AdamW优化器、梯度裁剪和余弦退火学习率等技术,提供高效的图像分类解决方案。
QFormer - 四边形注意力机制提升视觉Transformer性能
GithubVision Transformer图像分类开源项目注意力机制目标检测计算机视觉
QFormer是一种创新的视觉Transformer模型,采用四边形注意力机制替代传统窗口注意力。该模型通过可学习的四边形回归模块,将默认窗口转换为目标四边形进行计算,从而更好地建模不同形状和方向的目标。在图像分类、目标检测、语义分割和人体姿态估计等多项视觉任务中,QFormer在保持低计算成本的同时,性能显著优于现有的视觉Transformer模型。
lang-seg - 语言驱动的零样本语义图像分割模型
CLIPGithubLSeg开源项目计算机视觉语义分割零样本学习
LSeg是一种语言驱动的语义图像分割模型,结合文本编码器和Transformer图像编码器。它能将描述性标签与图像像素对齐,实现高效零样本分割。LSeg在多个数据集上表现出色,无需额外训练即可泛化到新类别。该模型在固定标签集上可与传统算法媲美,为语义分割任务提供了灵活有力的解决方案。
LLFormer - 高效处理超高清低光照图像的Transformer模型
AAAIGithubTransformer低光照图像增强开源项目超高清
LLFormer是一种新型Transformer模型,专门用于增强超高清低光照图像。通过创新的轴向多头自注意力和跨层注意力融合机制,LLFormer能高效处理4K和8K分辨率图像。在UHDLOL基准测试中,该模型性能显著优于现有方法。LLFormer不仅提升了图像质量,还能改善低光照条件下人脸检测等下游任务的效果。
GroupMixFormer - 视觉Transformer的群组混合注意力革新
GithubGroupMixFormer图像分类开源项目自注意力机制视觉Transformer计算机视觉
GroupMixFormer是一种创新的视觉Transformer模型,引入群组混合注意力(GMA)机制来增强传统自注意力。GMA可同时捕捉不同尺度的token和群组相关性,显著提升模型表征能力。在多项计算机视觉任务中,GroupMixFormer以较少参数实现了领先性能。其中GroupMixFormer-L在ImageNet-1K分类上达到86.2% Top-1准确率,GroupMixFormer-B在ADE20K分割上获得51.2% mIoU,展现出强大潜力。
GeoSeg - 遥感图像语义分割框架 支持多种数据集和先进模型
GeoSegGithubVision Transformer开源项目深度学习语义分割遥感图像
GeoSeg是一个开源的遥感图像语义分割工具箱,基于PyTorch等框架开发。它专注于先进视觉Transformer模型,支持多个遥感数据集,提供统一训练脚本和多尺度训练测试功能。项目实现了Mamba、Vision Transformer和CNN等多种网络架构,为遥感图像分割研究提供统一基准平台。
mformer-care - 基于Transformers的多模态深度学习模型
GithubHuggingfacetransformers开源开源项目机器学习模型深度学习自然语言处理
mformer-care是一个基于Hugging Face Transformers库开发的开源项目,采用MIT许可证,支持英语语言处理。该项目利用Transformer架构实现多模态数据的处理与分析。
poolformer_m36.sail_in1k - MetaFormer架构的PoolFormer图像分类与特征提取模型
GithubHuggingfaceImageNet-1kMetaFormerPoolFormertimm图像分类开源项目模型
poolformer_m36.sail_in1k是一个基于MetaFormer架构的PoolFormer图像分类模型,在ImageNet-1k数据集上训练。该模型拥有5620万参数,支持图像分类、特征图提取和图像嵌入等功能。它能高效处理224x224大小的图像,在保持性能的同时降低计算复杂度。研究人员和开发者可通过timm库轻松使用这一预训练模型,应用于多种计算机视觉任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号