Project Icon

elasticsearch-learning-to-rank

Elasticsearch搜索结果排序优化插件

elasticsearch-learning-to-rank是一款专为Elasticsearch设计的搜索结果排序优化插件。它能够存储查询模板作为特征,记录相关性分数用于离线模型训练,并支持存储多种类型的排序模型。该插件可利用存储的模型对搜索结果进行智能排序,已在维基媒体基金会等多个知名机构的搜索系统中得到应用。插件支持线性模型、XGBoost和RankLib等多种算法,为开发者提供了灵活的排序优化方案。

metarank - 实时个性化搜索和推荐服务,优化CTR和用户体验
GithubMetarank个性化开源开源项目排序服务推荐系统
Metarank是一个开源排名服务,帮助构建个性化的语义/神经搜索和推荐系统。通过整合点击和购买等客户信号,该服务可以优化搜索结果和推荐内容,实现最大化CTR。其快速性能支持大规模结果集的重新排序,并提供开箱即用的排名信号计算,节省开发时间。与多种流处理系统集成,Metarank能处理大量RPS,支持横向扩展。另外,用户可以使用LLM,在搜索查询中理解其真实含义,提供更智能的搜索解决方案。
ranking - TensorFlow平台上的学习排名技术库
GithubTensorBoardTensorFlow Ranking学习排序开源项目排序模型深度学习
TensorFlow Ranking是一个适用于学习排名(LTR)技术的开源库,基于TensorFlow平台。该库包括点对、成对和列表损失函数,以及各类排名指标如平均倒数排名(MRR)和标准折扣累积增益(NDCG)。它提供了群组评分功能和LambdaLoss的实现,用于优化排名指标。此外,它还支持从偏见反馈数据中进行无偏学习。该库旨在为学术研究和工业应用提供一个开放、便捷的平台。用户可通过教程和演示快速入门,无需复杂安装。
allRank - 深入的PyTorch排序学习框架,支持多种神经网络模型
GithubPyTorchallRank学习排序开源项目损失函数评估指标
allRank是一个基于PyTorch的框架,旨在简化神经排序学习模型的实验。它提供多种损失函数和评分函数,并支持常用评估指标如NDCG和MRR。该框架支持添加自定义损失和配置模型与训练流程,适用于研究和工业应用。同时支持GPU和CPU架构,并集成了Google云存储功能。
LLMRank - 大语言模型在推荐系统排序中的应用与挑战
GithubLLMRank偏见大语言模型开源项目推荐系统零样本排序
LLMRank项目聚焦大语言模型在推荐系统排序中的潜力。研究采用指令跟随方法,将用户行为历史和候选项整合到自然语言模板中。实验结果显示,大语言模型具备强大的零样本排序能力,但在处理用户历史顺序信息时面临挑战。通过设计特定提示策略,可有效提升排序表现。此外,项目还深入分析了排序过程中的偏见问题,并提出了相应的解决方案。
mxbai-rerank-large-v1 - 基于Transformers的文本智能重排序模型
GithubHuggingfaceTransformers开源项目文本处理机器学习模型模型训练自然语言处理
mxbai-rerank-large-v1基于Transformers架构设计的文本重排序开源模型。通过对搜索结果进行智能重排序,改善检索系统的准确率。该模型支持跨语言处理,广泛应用于搜索引擎和问答系统,部署简单且性能稳定。
elasticsearch - 高性能分布式搜索和分析引擎 支持海量数据实时处理
ElasticsearchGithub分析引擎向量数据库开源项目搜索引擎数据存储
Elasticsearch是一款开源的分布式搜索和分析引擎,同时也是可扩展的数据存储和向量数据库。它专为生产环境优化,提供卓越的速度和相关性。作为Elastic Stack的核心组件,Elasticsearch支持近实时处理海量数据、执行向量搜索以及与生成式AI应用集成。它广泛应用于全文搜索、日志分析、指标监控、应用性能管理和安全日志等领域,为组织提供强大的数据处理和分析能力。
FlashRank - 为优化搜索和检索流程设计的超轻量的Python库
FlashRankGithub开源项目模型神经网络跨编码器重排序
FlashRank是一款极速、超轻量的Python库,专为优化搜索和检索流程设计。基于最新的SoTA大规模语言模型和交叉编码器,支持多种再排序模式并能在常规CPU上运行。模型轻至4MB,适合AWS Lambda等无服务器环境,有效减低运行成本,提升处理效率。适合多样化的部署场景和搜索策略,是提升搜索效率的优选工具。
mxbai-rerank-xsmall-v1 - 轻量级多语言搜索重排序模型
GithubHuggingfacetransformers人工智能开源项目机器学习模型模型重排自然语言处理
mxbai-rerank-xsmall-v1是一个轻量级多语言搜索重排序模型(reranker)。该模型基于transformers.js实现,可在浏览器中运行,支持多种语言。它在保持小巧的同时,能有效提升搜索结果相关性。这个开源项目适用于需要快速、精准重排序的应用场景,为开发者提供了灵活的定制和集成选项。
mxbai-rerank-base-v1 - 跨语言重排序模型提升搜索结果相关性
GithubHuggingfacetransformers人工智能开源项目机器学习模型深度学习自然语言处理
mxbai-rerank-base-v1是一个基于transformers库开发的跨语言重排序模型。该模型支持多语言处理,可在transformers.js中使用,有助于提升搜索结果的相关性。模型采用Apache-2.0开源协议发布,适用于搜索引擎、推荐系统和问答系统等场景,能够优化排序结果。
awesome-elasticsearch - Elasticsearch资源大全与实践指南
ElasticsearchGithubKibana开源项目搜索引擎数据可视化日志分析
这是一个全面的Elasticsearch资源汇总项目,涵盖了书籍、工具、插件和教程等多方面内容。项目为开发者和运维人员提供了关于Elasticsearch安装配置、性能调优和安全防护等方面的学习和实践资料。此外,项目还收录了多个实用的开源工具和扩展,有助于更好地管理和使用Elasticsearch。对于有意深入学习和应用Elasticsearch的人士而言,该项目是一个极具参考价值的资源库。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号