Project Icon

elasticsearch-learning-to-rank

Elasticsearch搜索结果排序优化插件

elasticsearch-learning-to-rank是一款专为Elasticsearch设计的搜索结果排序优化插件。它能够存储查询模板作为特征,记录相关性分数用于离线模型训练,并支持存储多种类型的排序模型。该插件可利用存储的模型对搜索结果进行智能排序,已在维基媒体基金会等多个知名机构的搜索系统中得到应用。插件支持线性模型、XGBoost和RankLib等多种算法,为开发者提供了灵活的排序优化方案。

ai-powered-search - 现代搜索引擎的AI驱动技术实践
AI搜索引擎Apache SolrGithub开源项目机器学习自然语言处理语义搜索
AI-Powered Search项目展示了现代搜索引擎的AI驱动技术,包括语义搜索、检索增强生成和个性化搜索等。项目基于Python和PySpark开发,支持多种搜索引擎和向量数据库。通过Docker容器和Jupyter Notebooks,开发者可以实践《AI-Powered Search》一书中的代码示例,深入学习构建智能搜索引擎的先进技术。
InRanker-base - 增强跨领域场景信息检索的AI解决方案
GithubHuggingfaceInRanker信息检索开源项目无监督学习模型模型蒸馏语言模型
InRanker通过语言模型和重排序技术,在无需额外查询或人工标注的情况下提升跨领域信息检索能力。其双重蒸馏训练策略有效生成训练数据,从而优化了模型性能,并保持易用特性。
elasticsearch-sql - SQL语法查询ES数据的开源插件
Elasticsearch-SQLGithubSQL语法开源项目插件搜索引擎查询
elasticsearch-sql插件支持从ES 1.x到8.x的多个版本,允许使用SQL语法查询ES数据。它实现了大部分SQL功能,并与ES函数集成。项目提供Web界面方便操作,虽已停止积极开发,但作为开源工具仍可用于数据查询和分析。该插件集成了ES函数,使SQL查询更加灵活强大,为用户提供了一种便捷的方式来探索和分析Elasticsearch中的数据。
bge-reranker-v2.5-gemma2-lightweight - 多语言轻量级模型提供高效排序和相似度评估
GithubHuggingfacebge-reranker-v2.5-gemma2-lightweight压缩比多语言开源项目性能表现模型轻量化
该多语言轻量级排序模型通过词元压缩和逐层优化,节省资源同时维持高性能。根据使用场景和资源限制,用户可灵活选择模型的压缩比例和输出层次,实现高效推理。项目已在BEIR和MIRACL上达到新SOTA性能,技术细节报告将于稍后发布。
elasticsearch-labs - 收录了可执行的Python笔记本、示例应用和资源,用于测试Elastic平台的各种功能
AI/MLElasticsearchGithubPython笔记本向量数据库开源项目搜索引擎
该项目收录了可执行的Python笔记本、示例应用和资源,用于测试Elastic平台的各种功能。通过本项目,可以学习如何利用Elasticsearch作为向量数据库,支持混合和语义搜索,并构建检索增强生成、摘要和问答等应用场景。还可以测试Elastic的前沿功能,例如Elastic Learned Sparse Encoder和递归排序融合。项目还支持与OpenAI、Hugging Face等集成,为AI/ML驱动的应用提供基础,探索更多高级搜索体验。
opensearch-neural-sparse-encoding-v1 - 跨平台高效搜索的稀疏检索模型
GithubHuggingfaceLucene倒排索引MS MARCO数据集OpenSearch开源项目查询扩展模型稀疏检索
此开源项目展示了一个学习型稀疏检索模型,通过将查询和文档编码为稀疏向量,提供高效的搜索解决方案。模型在MS MARCO数据集上进行训练,并在BEIR基准测试中展示了优良的搜索相关性与推理速度。支持OpenSearch神经稀疏功能,能与Lucene倒排索引结合,进行高效的索引与搜索。该项目提供多个模型版本,适应不同的数据集与应用需求。使用者能在OpenSearch集群内或通过HuggingFace模型API进行模型的外部运行。
splade - 优化查询和文档检索的SPLADE稀疏模型
BEIR基准GithubSPLADE信息检索开源项目模型训练
SPLADE项目使用BERT的MLM头和稀疏正则化来学习查询和文档的稀疏扩展,优化了检索性能。项目包含训练、索引和检索的代码,并支持在BEIR基准测试中评估。最新版本通过硬负样本采样、蒸馏和改进的预训练语言模型初始化,显著提升了检索效果。此外,SPLADE的稀疏表示优化了倒排索引的使用,提供了显式词汇匹配和可解释性等优点。经过优化的训练和正则化,SPLADE在域内外测试中表现优异,延迟性能与BM25相当。
bge-reranker-v2-gemma - 多语言支持的轻量级文本重排工具
FlagEmbeddingGithubHuggingfaceReranker多语言开源项目模型模型列表相似性评分
bge-reranker-v2-gemma项目提供了一种轻量级的多语言文本重排器,具备快速推理能力和出色的英语及多语言应用表现。通过输入查询和文档,模型能够输出相似度得分,并将结果映射为0到1之间的值。用户可以根据具体需求选择适合的模型,适用于多语言环境下的高效文本重排。该工具提供性能和效率的优化选项,便于模型的迭代与升级。
ms-marco-MiniLM-L-2-v2 - 基于MS Marco训练的跨编码器模型实现高效文本排序
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型性能自然语言处理
这是一个基于MS Marco Passage Ranking任务训练的跨编码器模型。主要用于信息检索领域,通过对查询和候选段落编码实现文本排序。模型在TREC Deep Learning 2019和MS Marco Passage Reranking数据集上展现出优秀性能,NDCG@10和MRR@10指标表现突出。支持Transformers和SentenceTransformers两种调用方式,适用于多种应用场景。
jina-reranker-v1-tiny-en - 快速文本重排序解决方案,支持最长8192个token处理
ALiBiGithubHuggingfaceJina AIreranker开源项目文本分类模型知识蒸馏
jina-reranker-v1-tiny-en在JinaBERT模型基础上通过知识蒸馏技术实现高效文本重排序,支持最长8192个token的处理,适用于高速度需求场景,并确保结果的准确性。提供多种接入方式,包括Jina AI Reranker API、sentence-transformers库及transformers.js等。该模型表现优异,确保搜索结果的相关性和准确性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号