Project Icon

VLMEvalKit

开源的大型视觉语言模型评估工具包

VLMEvalKit是一款开源的大型视觉语言模型评估工具包,支持即插即用的评估操作,无需繁重的数据准备。该工具包支持多种顶级数据库和最新模型测试,并为用户提供精确匹配和基于LLM的答案提取两种评估结果。有效工具,帮助专业人员和研究者评估模型性能。

VLM_survey - 用于视觉任务的 AWESOME 视觉语言模型集合
GithubVision-Language Models开源项目数据集知识蒸馏视觉识别任务预训练方法
本页面详尽介绍了视觉语言模型(VLM)在视觉识别任务中的应用和发展。内容涵盖VLM的起源、常用架构、预训练目标、主流数据集及不同的预训练方式、迁移学习和知识蒸馏方法,并针对这些方法进行了详细的基准测试和分析。页面还讨论了未来研究的挑战和方向,让用户掌握VLM技术在图像分类、对象检测和语义分割等任务中的最新应用进展。
evalverse - 开源大语言模型评估工具集
AI研究EvalverseGithubLLM评估开源项目评估报告
Evalverse是一个开源的大语言模型评估工具集,提供统一、标准化的评估解决方案。支持多种评估方法,可无代码进行评估并生成报告。通过子模块扩展评估能力,集成lm-evaluation-harness和FastChat等框架。生成的详细报告包含分数、排名和可视化,便于比较不同模型性能。适用于AI研究人员及LLM领域新手。
lmms-eval - 大规模多模态模型评估框架加速AI发展
AI基准测试GithubLMMs-eval多模态模型开源项目评估框架
lmms-eval是专为大规模多模态模型(LMMs)设计的评估框架,整合多种基准和数据集,提供一致高效的评估方法。支持图像、视频等多模态任务,简化评估流程,加速模型开发和性能比较。该框架为研究人员提供灵活工具,助力理解和改进LMMs能力,推动人工智能向通用人工智能(AGI)发展。lmms-eval旨在成为加速LMMs发展的重要生态系统组件。
deepeval - 简化LLM输出评估的开源框架
AI测试DeepEvalGithubLLM评估开源框架开源项目指标评估
DeepEval是一款开源的大型语言模型(LLM)输出评估框架。它提供G-Eval、幻觉检测和答案相关性等多种评估指标,支持本地运行。该框架适用于RAG和微调应用,可与LangChain和LlamaIndex等工具集成。DeepEval具备批量评估、自定义指标创建功能,易于集成到CI/CD环境。此外,它还支持对主流LLM基准进行简易评估,并可与Confident AI平台对接,实现持续评估和结果分析。
llmeval-1 - 系统评估中文大语言模型的创新研究项目
GithubLLMEVAL-1大模型大语言模型评测开源项目排行榜评测方法
LLMEVAL-1项目致力于系统研究大语言模型评价方法。该项目涵盖17个大类、453个问题,内容包括事实性问答、阅读理解和框架生成等多个领域。评测采用分项和对比两种方式,从正确性、流畅性、信息量、逻辑性和无害性五个维度进行。LLMEVAL-1通过结合众包和专业评测,为中文大语言模型提供了全面、客观的评估基准。
Awesome-LLM-Eval - 集成了评估工具、数据集、演示与论文资源的平台
GithubLLM应用LLM技术边界大模型评估开源项目评估工具评估数据集
Awesome-LLM-Eval 包罗万象,集成了评估工具、数据集、演示与论文资源,深入探讨大型语言模型的评估技术和方法。该平台支撑学术探索与实际应用,并致力于提升语言模型的透明度及可信度。
DeepSeek-VL - 高性能开源视觉语言模型 多模态理解与复杂场景应用
DeepSeek-VLGithub人工智能多模态理解开源开源项目视觉语言模型
DeepSeek-VL是一个开源视觉语言模型,为实际应用场景而设计。它能处理逻辑图表、网页、公式、科学文献、自然图像等,并在复杂场景中展现智能。模型提供1.3B和7B两种参数规模,支持基础和对话应用,可用于学术研究和商业用途。DeepSeek-VL采用MIT许可证,为研究人员和开发者提供了强大的视觉语言处理工具。
T-Eval - 分步骤评估大语言模型工具使用能力的基准测试框架
GithubT-Eval基准测试大语言模型工具使用能力开源项目评估
T-Eval是一个评估大语言模型工具使用能力的基准测试框架。它将评估过程分解为指令遵循、规划、推理、检索、理解和审查等多个子过程,实现了细粒度分析。该项目提供英文和中文评测数据集、测试脚本和排行榜。T-Eval为研究人员和开发者提供了一个深入分析语言模型工具使用能力的新方法。
VisionLLM - 面向视觉任务的开放式多模态大语言模型
GithubVisionLLM人工智能多模态大语言模型开源项目视觉语言任务计算机视觉
VisionLLM 系列是一种多模态大语言模型,专注于视觉相关任务。该模型利用大语言模型作为开放式解码器,支持数百种视觉语言任务,包括视觉理解、感知和生成。VisionLLM v2 进一步提升了模型的通用性,扩展了其在多模态应用场景中的能力,推动了计算机视觉与自然语言处理的融合。
evalscope - 综合性大语言模型评估开源工具
EvalScopeGithub可视化大语言模型开源项目模型集成评估框架
EvalScope是一个全面的大语言模型评估框架,集成了多种基准数据集和评估指标。该框架提供模型集成、自动评估和报告生成功能,并支持Arena模式和可视化分析。通过整合OpenCompass和VLMEvalKit评估后端,EvalScope实现了多模态评估能力。此外,它能与ModelScope SWIFT平台无缝对接,支持大模型的端到端开发流程。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号