Project Icon

VLMEvalKit

开源的大型视觉语言模型评估工具包

VLMEvalKit是一款开源的大型视觉语言模型评估工具包,支持即插即用的评估操作,无需繁重的数据准备。该工具包支持多种顶级数据库和最新模型测试,并为用户提供精确匹配和基于LLM的答案提取两种评估结果。有效工具,帮助专业人员和研究者评估模型性能。

LLM-Tool-Survey - 大型语言模型工具学习调查研究
Github人工智能大语言模型工具学习开源项目综述自然语言处理
该研究系统性调查大型语言模型(LLMs)通过工具学习增强解决复杂问题能力。从工具学习的优势和实现方法两方面全面回顾现有文献,总结基准测试和评估方法,讨论当前挑战和未来方向,为相关研究和开发提供见解。
Llama-3-VILA1.5-8B - 视觉语言模型支持多图像推理和边缘计算
GithubHuggingfaceVILA图文理解多模态大模型开源项目模型视觉语言模型边缘计算
Llama-3-VILA1.5-8B是一款基于大规模交错图像-文本数据预训练的视觉语言模型。该模型具备多图像推理、情境学习和视觉思维链等功能,可部署于边缘设备。在12个基准测试中,包括5个学术视觉问答和7个指令跟随测试,Llama-3-VILA1.5-8B展现了优秀性能。这一模型为研究人员和AI爱好者提供了进行大型多模态模型和聊天机器人研究的有力工具。
langtest - 开源工具助力语言模型全面测试与优化
AI偏见检测GithubLangTestNLP开源项目模型评估语言模型测试
LangTest是一款强大的开源工具,专为语言模型的测试和优化而设计。该工具提供超过60种测试类型,全面评估模型的鲁棒性、偏见、表示、公平性和准确性。LangTest兼容多个主流NLP框架,如Spark NLP、Hugging Face和Transformers。此外,它还能对OpenAI、Cohere等大型语言模型进行问答、毒性检测和临床测试等方面的评估。通过使用LangTest,数据科学家可以开发出更安全、可靠和负责任的自然语言处理模型。
VILA - 创新的视觉语言模型预训练方法
GithubVILA多模态开源项目视觉语言模型量化预训练
VILA是一种新型视觉语言模型,采用大规模交错图像-文本数据预训练,增强了视频和多图像理解能力。通过AWQ 4位量化和TinyChat框架,VILA可部署到边缘设备。该模型在视频推理、上下文学习和视觉思维链等方面表现出色,并在多项基准测试中获得了优异成绩。项目完全开源,包括训练和评估代码、数据集以及模型检查点。
Open-LLaVA-NeXT - 多模态大语言模型实现视觉语言对齐和指令微调的开源项目
AI模型评估GithubLLaVA-NeXT多模态模型开源实现开源项目视觉语言训练
Open-LLaVA-NeXT是一个复现LLaVA-NeXT系列模型的开源项目。它提供开源训练数据和检查点,基于LLaVA代码库进行修改。该项目支持CLIP-L-336视觉编码器以及Vicuna-7B和LLaMA3-8B等语言模型。通过特征对齐和视觉指令微调两个阶段的训练,Open-LLaVA-NeXT实现了多模态能力,在多项评估任务中表现优异。
Confident AI - 开源LLM评估平台加速企业AI应用落地优化
AI工具AI评估DeepEvalLLM测试开源工具性能分析
Confident AI作为开源大语言模型评估平台,提供全面LLM测试方案。平台支持多种评估指标和快速单元测试,并具备A/B测试、输出分类和报告功能。这些特性有助于企业优化LLM工作流程,提高投资回报率,加快AI解决方案的市场化进程。Confident AI为企业提供了可靠的工具,以更高效地将LLM应用部署到生产环境。
awesome-LLM-resourses - 中文大语言模型全面资源汇总 数据处理到评估应有尽有
GithubLLMRAG大语言模型开源项目微调推理评估
该项目汇总了中文大语言模型(LLM)领域的全面资源,包含数据处理、微调、推理和评估等多个环节的开源工具。资源库涵盖最新LLM技术,并收录RAG系统和AI代理等前沿应用。项目为LLM研究者和开发者提供了丰富的工具和信息,有助于推进相关项目的开发与应用。
LLaVA-NeXT - 大规模开源多模态模型提升视觉语言能力
AI助手GithubLLaVA-NeXT多模态模型大语言模型开源项目视觉语言模型
LLaVA-NeXT是一个开源的大规模多模态模型项目,致力于提升视觉语言交互能力。该项目支持多图像、视频和3D任务的统一处理,在多个基准测试中表现卓越。LLaVA-NeXT提供了多个模型变体,包括支持高分辨率输入和视频处理的版本,以及基于不同大语言模型的实现。此外,项目还开源了训练数据和代码,为研究人员和开发者提供了宝贵资源。
VBench - 视频生成模型多维度质量评估套件
GithubPython包VBench基准套件开源项目视频生成模型评价
VBench项目提供一个全面的基准测试套件,专用于评估视频生成模型的多维质量。通过分层的评估维度,VBench可以细化并客观地评估视频生成质量的多个方面。套件包含详细的提示和评估方法,并提供人类偏好注释,确保结果与人类感知一致。用户可以选择对自定义视频或标准提示进行评估,以确保模型间的公平对比。
CogVLM2 - 基于Llama3-8B的GPT4V级开源多模态模型
CogVLM2CogVLM2-VideoGithubMeta-Llama-3-8B-Instruct图像理解开源项目视频理解
CogVLM2是基于Meta-Llama-3-8B-Instruct的下一代模型系列,在多项基准测试中表现优异,支持中英文内容和高分辨率图像处理。该系列模型适用于图像理解、多轮对话和视频理解,特别适合需要处理长文本和高分辨率图像的场景。CogVLM2系列还支持8K内容长度,并在TextVQA和DocVQA等任务中显著提升表现。体验更先进的CogVLM2和CogVLM2-Video模型,迎接未来视觉智能挑战。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号