Project Icon

upernet-swin-large

Swin Transformer 与 UperNet 结合的语义分割方法

UperNet 利用 Swin Transformer 大型网络进行语义分割,框架包含组件如主干网络、特征金字塔网络及金字塔池模块。可与各种视觉主干结合使用,对每个像素预测语义标签,适合语义分割任务,并可在 Hugging Face 平台找到特定任务的优化版本。通过 Swin Transformer 与 UperNet 的结合,用户可在场景理解中实现精确的语义分割。

mask2former-swin-large-mapillary-vistas-semantic - Mask2Former模型整合多尺度变形和掩码注意力实现高效图像分割
GithubHuggingfaceMask2Former图像分割开源项目模型深度学习计算机视觉语义分割
Mask2Former是基于Swin骨干网络的大型模型,针对Mapillary Vistas数据集进行语义分割训练。该模型采用统一方法处理实例、语义和全景分割任务,通过预测掩码集合及对应标签实现。结合多尺度变形注意力Transformer和掩码注意力机制,Mask2Former在性能和效率上均优于先前的SOTA模型MaskFormer。模型支持批量处理,输出类别和掩码查询逻辑,便于后续处理和结果可视化。
efficientnet_b5.sw_in12k_ft_in1k - EfficientNet-加强版:适用于图像分类与特征提取的高效模型
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
EfficientNet模型结合了Swin Transformer的优化策略,经过ImageNet-12k预训练及ImageNet-1k微调,适用于图像识别、特征提取和嵌入生成。该模型使用AdamW优化器、梯度裁剪和余弦退火学习率等技术,提供高效的图像分类解决方案。
pytorch-3dunet - 支持语义分割和回归问题的3D U-Net模型实现
3D U-NetGithubpytorch-3dunet安装开源项目训练预测
pytorch-3dunet实现了多种3D U-Net模型及其变体,包括标准3D U-Net、残差3D U-Net和带压缩激励块的残差3D U-Net。该项目支持二元和多分类语义分割以及去噪、学习反卷积等回归问题。项目还支持2D U-Net,提供多种配置示例帮助用户训练和预测。此外,该项目可在Windows和OS X系统上运行,并支持多种损失函数和评估指标,如Dice系数、平均交并比、均方误差等。这一描述更加简洁、流畅,同时保持了准确性。
U-2-Net - 深度嵌套U结构助力显著对象精准检测
GithubU2-Net人像分割图像背景移除开源项目模型训练视觉应用
U-2-Net,一项荣获2020年模式识别最佳论文奖的创新技术,通过其深度嵌套U结构显著提升对象检测精准度。此技术广泛适用于图像处理、视频分析、背景移除及人像生成等领域,并提供丰富的开发资源助力应用的快速迭代。
oneformer_ade20k_dinat_large - OneFormer单一模型在多任务图像分割中实现卓越表现
ADE20kGithubHuggingfaceOneFormer图像分割实例分割开源项目模型语义分割
OneFormer模型借助单一架构和模块在ADE20k数据集上进行训练,适用于语义、实例和全景分割。通过使用任务令牌,该模型能够动态调整以满足不同任务要求,不仅显著优化了分割效果,还具备替代专门化模型的潜力。
u-net - 使用Keras库构建深度神经网络的教程
GithubKerasTensorFlowU-NetUltrasound Nerve Segmentation开源项目深度学习
本教程使用Keras库构建深度神经网络,用于超声图像神经分割,特别适用于Kaggle竞赛。从数据预处理、模型定义、训练到提交文件生成,教程提供了详尽的步骤说明。实验表明该方法在测试图像中取得约0.57的得分,为后续优化提供了出发点。
UPR-Net - 创新的轻量级视频帧插值网络
GithubUPR-Net光流估计开源项目深度学习视频插帧金字塔递归网络
UPR-Net是一种创新的统一金字塔递归网络,用于视频帧插值。该网络采用轻量级递归模块进行双向光流估计和中间帧合成,通过金字塔框架实现迭代细化。尽管参数量仅为1.7M,UPR-Net在多个基准测试中表现出色,特别是在大运动场景下效果显著。项目提供完整的模型训练、测试和评估实现,包括在Vimeo90K、UCF101、SNU-FILM和4K1000FPS等数据集上的评估结果。
MagNet - 多尺度语义分割框架提升图像精度
GithubMagNet卷积神经网络多尺度框架开源项目语义分割高分辨率数据集
MagNet是一种多尺度语义分割框架,采用多阶段处理方法解决高分辨率图像中的局部歧义问题。每个处理阶段对应一个放大级别,实现从粗到细的信息传播。在城市景观、航拍场景和医学图像等高分辨率数据集上的实验显示,MagNet的性能显著超越现有方法,为高分辨率图像的精确语义分割提供了新的技术方案。
UniSeg - 多模态3D医学图像通用分割模型
GithubMICCAI 2023UniSeg分割模型医学图像多器官分割开源项目
UniSeg是一个基于提示驱动的通用分割模型,可对多模态、多领域的3D医学图像进行多器官、肿瘤和椎骨分割。作为强大的分割模型和特征学习器,UniSeg提供完整代码实现、预训练模型及详细使用说明。项目涵盖数据准备、预处理、训练和测试等步骤。在MICCAI SegRap 2023比赛中,UniSeg在两项任务中均获得第二名,展现了其在医学图像分割领域的出色表现。
mit-b5 - SegFormer层次化Transformer编码器预训练模型
GithubHuggingfaceSegFormerTransformer图像分类开源项目模型语义分割预训练模型
SegFormer (b5-sized) encoder是一个在ImageNet-1k上预训练的语义分割模型。它采用层次化Transformer编码器结构,为下游任务微调提供基础。该模型在ADE20K和Cityscapes等语义分割基准测试中表现优异,同时也适用于图像分类等相关任务。用户可通过简洁的Python代码轻松调用此模型进行实验和应用开发。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号