Project Icon

upernet-swin-small

UperNet结合Swin Transformer实现精确语义分割

UperNet结合Swin Transformer骨干网络,提供高效的语义分割解决方案,适用于多种视觉任务,实现每像素精确语义标签预测。

UniRef - 跨空间时间的统一视觉对象分割模型
GithubUniRef++参考对象分割开源项目深度学习目标分割视频对象分割
UniRef++是一个统一的视觉模型,可同时处理指代图像分割、少样本分割、指代视频对象分割和视频对象分割四种任务。其核心UniFusion模块能高效注入多种参考信息,不仅性能优异,还可作为SAM等基础模型的插件组件使用。该模型在多个benchmark上展现出色表现,体现了其在对象分割领域的通用性和扩展性。
mask2former-swin-large-mapillary-vistas-panoptic - Mask2Former:集实例、语义和全景分割于一体的图像分割模型
GithubHuggingfaceMask2Former图像分割开源项目模型深度学习计算机视觉语义分割
Mask2Former是一个基于Swin主干网络的高级图像分割模型,在Mapillary Vistas数据集上训练用于全景分割。它通过预测掩码和标签集合,统一处理实例、语义和全景分割任务。该模型采用改进的Transformer架构和高效训练策略,性能和效率均优于先前的MaskFormer。Mask2Former为各类图像分割应用提供了强大支持,推动了计算机视觉技术的进步。
UniSeg - 多模态3D医学图像通用分割模型
GithubMICCAI 2023UniSeg分割模型医学图像多器官分割开源项目
UniSeg是一个基于提示驱动的通用分割模型,可对多模态、多领域的3D医学图像进行多器官、肿瘤和椎骨分割。作为强大的分割模型和特征学习器,UniSeg提供完整代码实现、预训练模型及详细使用说明。项目涵盖数据准备、预处理、训练和测试等步骤。在MICCAI SegRap 2023比赛中,UniSeg在两项任务中均获得第二名,展现了其在医学图像分割领域的出色表现。
detr-resnet-50-panoptic - DETR模型:结合ResNet-50的端到端目标检测与全景分割
DETRGithubHuggingfaceTransformer开源项目模型目标检测计算机视觉语义分割
DETR-ResNet-50是一种创新的目标检测模型,融合了Transformer和卷积神经网络技术。该模型在COCO数据集上训练,支持端到端的目标检测和全景分割。通过100个对象查询机制,DETR实现了高效准确的目标识别。在COCO 2017验证集上,模型展现出优秀性能:框AP为38.8,分割AP为31.1,全景质量(PQ)达43.4。这一模型为计算机视觉任务提供了新的解决方案。
PaddleSeg - 高性能端到端图像分割工具套件,支持从训练到部署
AI套件GithubPaddleSegPaddleX图像分割开源项目飞桨
PaddleSeg是一款基于飞桨PaddlePaddle的图像分割套件,内含超过45种模型算法和140多个预训练模型,支持语义分割、交互式分割、Matting及全景分割。应用场景广泛,包括医疗、工业、遥感等。具备高精度、高性能、模块化以及全流程特性,兼容多个操作系统如Linux、Windows、MacOS,适用于多种硬件的训练和部署。
segformer-b5-finetuned-ade-640-640 - SegFormer-b5模型用于ADE20k数据集的语义分割
GithubHuggingfaceSegFormerTransformer图像处理开源项目模型深度学习语义分割
SegFormer-b5是一个针对ADE20k数据集640x640分辨率微调的语义分割模型。该模型采用层次化Transformer编码器和轻量级MLP解码头,在ADE20K等基准测试中表现优异。模型在ImageNet-1k预训练后,添加解码头并在目标数据集上微调,可应用于多种语义分割任务。
oneformer_ade20k_dinat_large - OneFormer单一模型在多任务图像分割中实现卓越表现
ADE20kGithubHuggingfaceOneFormer图像分割实例分割开源项目模型语义分割
OneFormer模型借助单一架构和模块在ADE20k数据集上进行训练,适用于语义、实例和全景分割。通过使用任务令牌,该模型能够动态调整以满足不同任务要求,不仅显著优化了分割效果,还具备替代专门化模型的潜力。
sssegmentation - 开源语义分割工具箱 集成多种先进算法和模型
GithubPyTorch开源工具开源项目深度学习计算机视觉语义分割
sssegmentation是基于PyTorch的开源语义分割工具箱,提供高性能、模块化设计和统一基准测试。它集成多种流行分割框架,支持各类backbone网络和分割器模型,包括SAM、MobileSAM等最新技术。该项目为语义分割研究和应用开发提供灵活易用的平台。
SeeSR - 基于语义感知的实景图像超分辨率方法
GithubSeeSR图像超分辨率开源项目扩散模型真实世界图像语义感知
SeeSR是一种新型语义感知实景图像超分辨率技术,结合稳定扩散模型和语义信息提升低分辨率图像质量。该方法已被CVPR2024接收并在GitHub开源。SeeSR可处理多种场景图像,并支持快速推理。项目提供预训练模型、测试数据集和使用说明,便于研究和应用。此外,项目还包含DAPE和SeeSR模型的训练指南,以及用于生成训练数据的工具。SeeSR采用tiled vae方法节省GPU内存,并提供Gradio演示界面。该技术在多个真实世界图像数据集上展现出优异性能。
DAFormer - 提升域适应语义分割的网络架构与训练策略
DAFormerGithubTransformer域自适应语义分割开源项目网络架构语义分割
通过Transformer编码器和多级上下文感知特征融合解码器,显著提升域适应语义分割性能。DAFormer使用稀有类采样、ImageNet特征距离和学习率预热等策略,提升GTA→Cityscapes和Synthia→Cityscapes的分割效果,并扩展至域泛化领域。在多个UDA基准上,DAFormer显著超越了前沿方法,成为领域推广和不受目标图像限制的语义分割任务中新的性能标杆。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号