Project Icon

InSPyReNet

优化显著目标检测的高分辨率图像金字塔网络

本项目介绍了一种基于图像金字塔的显著目标检测框架,称为逆显著性金字塔重构网络(InSPyReNet)。该方法无需高分辨率数据集即可进行高分辨率预测,并通过多尺度的图像融合解决感受野差异问题。实验结果表明,InSPyReNet在多项显著目标检测指标和边界精度上优于现有方法。项目提供了PyTorch实现,支持多GPU训练,且在HuggingFace等平台上提供了Web演示和命令行工具。

pytorch-hed - PyTorch重实现的全息嵌套边缘检测HED算法
GithubHEDPyTorch开源项目深度学习计算机视觉边缘检测
该项目是Holistically-Nested Edge Detection (HED)算法的PyTorch重新实现。项目提供命令行工具进行图像边缘检测,使用官方权重但在BSDS500数据集上ODS评分为0.774,略低于原始Caffe版本的0.780。项目包含使用说明、性能对比和引用信息,为研究和开发人员提供HED算法的实现参考。
tinynet_e.in1k - TinyNet模型在ImageNet-1k上的应用与性能分析
GithubHuggingfaceImageNet-1ktimmtinynet_e.in1k图像分类开源项目模型特征提取
TinyNet是一个旨在优化图像分类和特征提取的模型,通过调整分辨率、深度和宽度,在ImageNet-1k上进行训练。模型参数量为2.0M,并具有低计算负荷。提供简便的代码示例以支持图像分类、特征图提取和图像嵌入,可用于多种图像处理场景。同时,通过timm库探索其指标表现,更深入了解其在神经信息处理中的应用。
MIMDet - 掩码图像建模应用于目标检测的开源项目
GithubMIMDet卷积神经网络实例分割开源项目物体检测视觉变换器
MIMDet是一个利用掩码图像建模技术的开源项目,能够提升预训练的Vanilla Vision Transformer在目标检测中的表现。此框架采用混合架构,用随机初始化的卷积体系取代预训练的大核Patchify体系,实现多尺度表示无需上采样。在COCO数据集上的表现亮眼,使用ViT-Base和Mask R-CNN模型时,分别达到51.7的框AP和46.2的掩码AP;使用ViT-L模型时,成绩分别是54.3的框AP和48.2的掩码AP。
multispectral-object-detection - 多光谱图像融合的高效目标检测方法
GithubTransformerYOLOv5多光谱目标检测开源项目计算机视觉跨模态融合
该项目提出了Cross-Modality Fusion Transformer (CFT)多光谱目标检测方法,利用Transformer架构融合RGB和热红外图像信息。CFT在FLIR、LLVIP等数据集上取得了优秀的检测结果,尤其在夜间场景表现突出。这为多光谱目标检测提供了一种新的解决方案。
resnet101.tv_in1k - 采用ResNet101架构的高效图像分类和特征提取模型
GithubHuggingfaceImageNetresnet101.tv_in1k图像分类开源项目模型深度学习特征提取
resnet101.tv_in1k是一个基于ResNet101架构的图像分类模型,搭载ReLU激活、单层7x7卷积池化和1x1卷积下采样等特性,经过ImageNet-1k数据集训练,可用于图像特征提取和分类。在深度残差学习的加持下,该模型在特征提取和分类任务中表现突出,适合用于学术研究和商用产品开发。
tf_efficientnetv2_m.in21k_ft_in1k - EfficientNetV2的图片识别与特征提取
EfficientNet-v2GithubHuggingface图像分类图像嵌入开源项目模型深度学习特征提取
EfficientNetV2模型在ImageNet-21k数据集上预训练,并在ImageNet-1k上微调,最初使用TensorFlow构建,由Ross Wightman移植至PyTorch。其参数量为54.1M,能够在不同分辨率下实现精确的图像识别,并支持通过timm库执行图像分类、特征提取和嵌入生成等多任务。
U-2-Net - 深度嵌套U结构助力显著对象精准检测
GithubU2-Net人像分割图像背景移除开源项目模型训练视觉应用
U-2-Net,一项荣获2020年模式识别最佳论文奖的创新技术,通过其深度嵌套U结构显著提升对象检测精准度。此技术广泛适用于图像处理、视频分析、背景移除及人像生成等领域,并提供丰富的开发资源助力应用的快速迭代。
D-FINE - 精细化分布优化在实时物体检测中的应用
D-FINEDETRFine-grained Distribution RefinementGithub对象检测开源项目自蒸馏
D-FINE是一款实时物体检测工具,通过重新定义DETRs中的边框回归任务为精细化分布优化(FDR)以及引入全局最优定位自蒸馏(GO-LSD),在不增加推理和训练成本的情况下,提升了检测性能。它在复杂街道场景下具有出色的定位能力,对于逆光、运动模糊和密集人群等挑战表现优异。最新版本增强了预训练模型的性能并提供了自定义数据集微调和输入尺寸调整的配置。
BiRefNet - 高分辨率图像分割的双边参考网络
BiRefNetGithubHugging Face双边参考图像分割开源项目高分辨率
BiRefNet是一个专注于高分辨率图像分割的创新网络。该项目在DIS、COD和HRSOD等多个高分辨率任务中取得了领先成果。BiRefNet采用双边参考机制提升分割精度,支持HuggingFace一行代码加载。项目开源了完整代码实现、预训练模型,并提供在线演示。这一工作为高分辨率图像分割研究带来了新的思路。
superpoint - 自监督模型SuperPoint提高多视图几何问题的兴趣点检测和描述
GithubHuggingfaceSuperPoint图像匹配开源项目模型特征提取自监督学习计算机视觉
SuperPoint是一种通过自监督学习进行兴趣点检测与描述的模型,主要用于多视图几何问题。利用全卷积网络,该模型能检测不同图像中的关键点并生成对应的描述符,可应用于单应性估计和图像匹配任务。借助同形变换自适应技术,SuperPoint在MS-COCO数据集上的训练表现优越,能够识别更多兴趣点,显著提升了单应性估计精度。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号