Project Icon

InSPyReNet

优化显著目标检测的高分辨率图像金字塔网络

本项目介绍了一种基于图像金字塔的显著目标检测框架,称为逆显著性金字塔重构网络(InSPyReNet)。该方法无需高分辨率数据集即可进行高分辨率预测,并通过多尺度的图像融合解决感受野差异问题。实验结果表明,InSPyReNet在多项显著目标检测指标和边界精度上优于现有方法。项目提供了PyTorch实现,支持多GPU训练,且在HuggingFace等平台上提供了Web演示和命令行工具。

pix2pixHD - 高分辨率图像到图像转换及语义编辑
GANsGithubpix2pixHD图像翻译开源项目语义操控高分辨率
此Pytorch实现的高分辨率图像到图像转换方法(如2048x1024),可以将语义标签图转化为真实感图像,或从面部标签图生成肖像。该项目适用于街景和肖像等图像生成及交互编辑。需要NVIDIA GPU,提供详细的安装、测试和训练指南,支持多GPU和自动混合精度训练。
CrossFormer - 融合跨尺度注意力的高效视觉Transformer
CrossFormer++Github图像分类开源项目目标检测视觉Transformer跨尺度注意力
CrossFormer++是一种创新的视觉Transformer模型,通过跨尺度注意力机制解决了不同尺度对象特征间建立关联的问题。该模型引入跨尺度嵌入层和长短距离注意力等设计,并采用渐进式分组策略和激活冷却层来平衡性能与计算效率。在图像分类、目标检测和语义分割等视觉任务中表现优异,尤其在密集预测任务中效果显著。CrossFormer++为计算机视觉领域提供了一种灵活高效的新型架构。
SINet - 先进的伪装目标检测算法,提升检测精度和效率
COD10K数据集Camouflaged Object DetectionGithubSINet开源项目目标检测计算机视觉
SINet是一种伪装目标检测算法,模仿人类视觉系统结构和动物捕食行为来提高检测精度。该算法在COD10K等数据集上性能优异,建立了新的基准。SINet具备实时推理能力,适用于多种实际应用场景。
xmc.dspy - Infer-Retrieve-Rank方法revolutionizing大规模多标签分类
GithubInfer-Retrieve-Rank上下文学习多标签分类开源项目极端多类别语言模型
Infer-Retrieve-Rank (IReRa)是一种创新的多标签分类方法,专门针对具有大量类别的任务。这个通用且模块化的程序通过预训练语言模型和检索器的交互,高效处理复杂的分类问题。IReRa仅需少量标记示例即可优化性能,无需模型微调。该项目提供完整文档,包括安装、数据处理、运行指南等,方便研究人员在各种语言模型推理和检索任务中应用。
detr - Transformer架构重塑目标检测流程
DETRGithubTransformer开源项目深度学习目标检测计算机视觉
DETR项目运用Transformer架构创新性地改进了目标检测方法。该方法将传统的复杂流程转化为直接的集合预测问题,在COCO数据集上达到42 AP的性能表现,同时计算资源消耗减半。DETR结合全局损失函数与编码器-解码器结构,实现了图像的高效并行处理,大幅提升了目标检测的速度和准确性。项目开源了简洁的实现代码和预训练模型,便于研究人员进行深入探索和实际应用。
SSD-Tensorflow - 目标检测的单一网络实现
COCOGithubPascal VOCSSDTensorFlowVGG开源项目
SSD是一种高效的目标检测框架,利用单一网络结构实现物体识别。该项目提供了TensorFlow的重实现版本,支持VGG架构并且易于扩展到其他变种,如ResNet和Inception。项目包括数据集接口、网络定义和数据预处理模块,用户可以通过提供的脚本进行模型训练和评估,支持Pascal VOC数据集。代码和示例帮助用户快速上手并应用于实际检测任务。
UnboundedNeRFPytorch - 大规模神经辐射场基准测试的指南
BenchmarkGithubNeRFPytorchState-of-the-artUnbounded Neural Radiance Fields开源项目
UnboundedNeRFPytorch项目专注于基准测试多种最新的大规模神经辐射场(NeRF)算法,并提供简洁高效的代码库。项目展示了在Unbounded Tanks & Temples和Mip-NeRF-360基准测试中的优秀表现,旨在帮助研究人员和开发者提升NeRF应用效果。包括详细的安装步骤、数据处理指南和训练自定义NeRF模型的方法,适合技术用户快速上手并获得佳绩。
Retinexformer - Retinexformer:高效低光照图像增强工具,支持15个基准测试和超高分辨率
GithubICCV 2023NTIRE 2024Retinexformer低光照图像增强开源项目高分辨率图像
Retinexformer是一个低光照图像增强项目,支持超过15个基准测试和超高分辨率图像(最高4000x6000)。该项目在NTIRE 2024挑战中获得第二名,提供代码、预训练模型和训练日志。Retinexformer框架支持分布式数据并行和混合精度训练,自适应分割测试策略显著提升模型性能。
resnet50d.ra2_in1k - 基于ResNet-D架构的高效图像分类与特征提取模型
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习神经网络
ResNet-D是一款在ImageNet-1k数据集训练的图像分类模型,采用ReLU激活函数和三层卷积结构,包含2560万参数。模型支持224x224尺寸训练输入和288x288测试输入,集成RandAugment增强技术,可实现图像分类、特征提取等计算机视觉任务。
regnetz_c16.ra3_in1k - 采用灵活配置的RegNetZ模型实现高效图像分类
BYOBNetGithubHuggingfaceImageNet-1kRegNetZtimm图像分类开源项目模型
RegNetZ模型在ImageNet-1k上训练后,展现出色的图像分类性能。该模型基于timm库实现,通过BYOBNet灵活配置支持,包括block/stage布局、激活层、归一化层及自注意层等自定义选项。提供多种应用,如图像分类、特征提取及嵌入生成,设计适合处理不同组宽及层配置需求,尤其适用于高精度及灵活性任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号