Project Icon

S-PubMedBert-MS-MARCO

医疗文本信息检索专用BERT模型

S-PubMedBert-MS-MARCO是一个针对医疗和健康文本领域优化的信息检索模型。它基于PubMedBERT,并通过MS-MARCO数据集微调,可将文本映射为768维向量。该模型适用于语义搜索和文本聚类,支持Sentence-Transformers和HuggingFace Transformers框架,为医疗文本分析提供了有效工具。

ms-marco-TinyBERT-L-6 - 跨编码器在信息检索与重排序中的应用
Cross-EncoderGithubHuggingfaceMS MarcoSentenceTransformers信息检索开源项目模型模型性能
TinyBERT-L-6模型在MS Marco Passage Ranking任务中进行了优化,解决信息检索中的查询与段落排序问题。该模型通过交叉编码器实现高效的信息检索,提升查准率并缩短排序时间。支持Transformers与SentenceTransformers工具使用,简化实现流程,展示良好性能。项目提供详尽的训练代码和性能评估,助力深度学习场景下的信息处理任务优化。
BioLinkBERT-base - 结合文献和引用关系的生物医学预训练模型
BioLinkBERTGithubHuggingface开源项目文本分类模型特征提取生物医学跨文档任务
BioLinkBERT-base模型利用PubMed文献和引用信息进行预训练,在多项生物医学NLP基准测试中达到了出色表现。它在知识密集型及跨文档任务中尤为有效,并可用于问题回答、序列分类和特征提取的微调应用。
ms-marco-MiniLM-L-6-v2 - MiniLM-L-6跨编码器模型提升MS Marco信息检索效率
GithubHuggingfaceMS MarcoSentenceTransformers交叉编码器信息检索开源项目模型模型性能
ms-marco-MiniLM-L-6-v2是一个针对MS Marco信息检索任务优化的跨编码器模型。在TREC Deep Learning 2019和MS Marco Passage Reranking数据集上,其NDCG@10和MRR@10分别达到74.30和39.01。模型每秒处理1800个文档,平衡了性能和效率。基于SentenceTransformers库,该模型可轻松集成到信息检索系统中,用于查询-段落相关性排序。
SapBERT-UMLS-2020AB-all-lang-from-XLMR - 跨语言生物医学实体表示学习框架
GithubHuggingfaceSapBERT实体链接开源项目模型生物医学自然语言处理跨语言模型
SapBERT-UMLS-2020AB-all-lang-from-XLMR是基于XLM-RoBERTa的跨语言生物医学实体表示学习框架。该模型利用UMLS 2020AB数据集训练,生成高质量的多语言生物医学实体嵌入。在ACL 2021和NAACL 2021会议上获得认可,为生物医学实体链接和语义相似度计算提供有力支持。研究人员可便捷提取实体表示,推动跨语言生物医学文本挖掘研究发展。
msmarco-MiniLM-L-6-v3 - 基于BERT的句子编码模型实现文本语义向量化和相似度计算
GithubHuggingfacesentence-transformers嵌入模型开源项目模型深度学习自然语言处理语义向量
msmarco-MiniLM-L-6-v3是一个基于sentence-transformers的句子编码模型,将文本映射至384维向量空间。模型基于BERT架构,支持文本相似度计算和聚类分析,可通过sentence-transformers或HuggingFace Transformers框架调用。
msmarco-MiniLM-L-12-v3 - 高效语句嵌入模型,适用于语义搜索和文本相似度任务
GithubHuggingfacesentence-transformers向量嵌入开源项目模型特征提取自然语言处理语义相似度
msmarco-MiniLM-L-12-v3是一个sentence-transformers模型,将句子和段落映射到384维密集向量空间。该模型基于BERT架构,使用平均池化,适用于聚类和语义搜索。它可通过sentence-transformers或HuggingFace Transformers库使用,高效生成句子嵌入。这个模型在多个基准测试中表现良好,为自然语言处理应用提供语义表示。
compact-biobert - 压缩优化的生物医学BERT模型
CompactBioBERTGithubHuggingface开源项目模型模型蒸馏深度学习生物医学自然语言处理
CompactBioBERT是BioBERT的压缩版本,通过结合DistilBioBERT和TinyBioBERT的蒸馏技术,在PubMed数据集上训练而成。该模型采用6层transformer结构,隐藏层和嵌入层维度为768,总参数约6500万。CompactBioBERT在保持生物医学自然语言处理性能的同时,有效缩小了模型规模,提升了计算效率。
ms-marco-MiniLM-L-4-v2 - MS Marco跨编码器模型优化信息检索和段落排序效率
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型评估自然语言处理
ms-marco-MiniLM-L-4-v2是一款针对MS Marco段落排序任务优化的跨编码器模型。在TREC DL 19和MS Marco开发集评测中,该模型的NDCG@10和MRR@10分别达到73.04和37.70,展现出优秀性能。它适用于查询-段落匹配和重排序等信息检索任务,每秒可处理2500个文档,在效率和性能间取得良好平衡。研究人员可通过Transformers或SentenceTransformers库轻松应用此模型。
BiomedCLIP-PubMedBERT_256-vit_base_patch16_224 - 基于PubMedBERT的生物医学视觉语言基础模型
BiomedCLIPGithubHuggingfacePubMedBERT图像分类开源项目模型生物医学视觉语言处理
BiomedCLIP是一个生物医学视觉语言基础模型,集成了PubMedBERT和Vision Transformer技术。该模型通过1500万医学图像-文本对的预训练,能够执行跨模态检索和图像分类等任务。在多个标准数据集上,BiomedCLIP显著提升了性能基准。这一模型为生物医学视觉语言处理研究奠定了坚实基础,在放射学等领域具有广泛应用前景。
PharmBERT-uncased - 药品标签处理的BERT模型
BERT模型GithubHuggingfacePharmBERT开源项目模型药品标签预训练领域专用模型
PharmBERT 是一个专用于药品标签的 BERT 模型,通过领域相关的预训练和微调技术,提高药品信息的提取和处理能力。适合制药和生命科学领域的专业人员使用,PharmBERT 可以有效解析药品文档,提升研发效率。有关更多信息和技术细节,请访问 PharmBERT 的 GitHub 页面。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号