Project Icon

builder

自动化构建和测试PyTorch二进制文件的工具集

pytorch builder是一个用于构建PyTorch二进制文件并执行端到端集成测试的脚本集合。它包括用于构建conda包、多平台wheels的脚本,以及用于驱动多配置构建和分析下载统计的工具。该项目提供了构建和测试环境,支持GitHub Actions触发的自动化流程。

pytorch-minimize - PyTorch多变量函数优化工具集
GithubPyTorch优化函数求解开源项目最小化自动微分
pytorch-minimize是PyTorch生态系统中的多变量函数优化工具集。它集成了BFGS、共轭梯度法和牛顿法等多种算法,支持CPU和GPU运算。该库利用自动微分技术计算精确导数,无需手动提供梯度。此外,它还提供约束优化和非线性最小二乘问题的解决方案,为确定性优化任务提供自动梯度计算和GPU加速支持。
mlops-python-package - MLOps Python工具包,简化机器学习工程实践
GitHub ActionsGithubMLOpsPython包开源项目自动化工具软件开发实践
这是一个集成多种MLOps最佳实践的Python代码库,旨在优化机器学习工程流程。该工具包提供了模型注册、实验跟踪和实时推理等核心功能,同时支持自动化任务、CI/CD集成、配置管理和数据处理等辅助功能。通过灵活且稳健的设计,这个工具包可以帮助开发者更高效地构建和部署MLOps项目,简化整个机器学习生命周期管理。
evotorch - 基于PyTorch的高性能进化计算库
EvoTorchGithubPyTorch优化算法开源项目强化学习进化计算
EvoTorch是一个基于PyTorch的开源进化计算框架,支持黑盒优化、强化学习和监督学习等多种优化问题。它实现了PGPE、CMA-ES和遗传算法等多种进化算法,并通过GPU加速和Ray分布式计算提高优化效率。EvoTorch设计简洁易用,适合解决各类复杂优化问题,为研究人员和工程师提供了强大的工具支持。
docker-android-build-box - 优化的Android和Flutter开发Docker镜像
AndroidCI/CDDockerFlutterGithub开发环境开源项目
docker-android-build-box是一个集成了Android SDK和Flutter SDK的优化Docker镜像。它包含多个Android SDK平台版本、构建工具、NDK和bundletool等最新Android开发工具。镜像还整合了Java、Python、Node.js和Ruby等常用开发环境。支持Bitbucket Pipelines和Github Actions,适用于CI/CD流程,简化Android和Flutter项目的构建过程。
ao - 优化PyTorch工作流,实现高性能和内存占用减少
GithubPyTorchtorchao开源项目推理模型量化训练
torchao是一个用于PyTorch工作流的高性能库,能够创建并集成自定义数据类型和优化技术,实现推理速度提升至2倍,显存减少65%。无需大幅修改代码,保持准确度。支持量化、稀疏化及浮点数优化,适用于HuggingFace等模型。用户可以轻松优化模型,提高计算效率。支持int8、int4和float8等多种数据类型,兼容torch.compile()和FSDP。
facetorch - Python库支持深度学习的面部检测和分析,同时加速CPU和GPU性能
GithubPython库TorchScriptfacetorch开源项目深度学习面部分析
Facetorch是一个Python库,使用深度神经网络进行面部检测和特征分析。它支持Hydra配置,使用conda-lock和Docker进行环境重现,并通过TorchScript加速CPU和GPU性能。该工具可扩展,允许通过Google Drive上传模型文件和添加配置文件。请谨慎使用,并遵循欧盟可信AI伦理指南。
depyf - 深入解析PyTorch编译器工作原理的开源工具
GithubPyTorchPythondepyftorch.compile反编译开源项目
depyf是一个开源工具,专注于解析PyTorch编译器torch.compile的内部工作机制。这个工具支持多个Python版本,提供简洁的API接口,能够生成详细的编译过程文档,并支持代码调试。通过depyf,机器学习研究人员和开发者可以深入理解编译过程,适应编译机制,并优化代码以提升性能。作为PyTorch生态系统的一员,depyf为用户提供了深入了解PyTorch编译器的机会。
beauty-net - 简洁灵活的PyTorch深度学习模板
GithubPyTorch对象导向开源项目模板美观高质量代码
BeautyNet是一个为PyTorch设计的简洁、灵活且可扩展的模板。该项目采用面向对象编程,代码质量高,结构清晰。BeautyNet提供简单的安装和运行步骤,便于快速上手和模型训练。这个模板旨在简化深度学习项目的开发流程,为研究人员和开发者提供高效的工作框架。
lightning-bolts - PyTorch Lightning的深度学习组件扩展
BoltsDeepSparseGithubPyTorch LightningSparseMLTorch ORT开源项目
Lightning Bolts为PyTorch Lightning提供了多种扩展组件,包括回调和数据集,旨在加速训练和推理。它支持通过Torch ORT将模型转换为优化的ONNX图,以实现GPU加速训练;并通过SparseML在微调中引入稀疏性,提高推理性能。项目支持广泛的问题解决,并欢迎用户贡献通用组件。了解更多安装和使用信息,请访问官方文档和社区支持平台。
ignite - PyTorch工具库,专为简化神经网络训练与评估设计
GithubPyTorch-Ignite事件和处理器开源项目神经网络训练评估
Ignite是一个为PyTorch设计的库,帮助用户以灵活和透明的方式训练及评估神经网络。这个库通过简化代码,提供了控制简单且强大的API,支持度量和实验管理等功能。其简单的引擎和事件系统,以及开箱即用的度量工具,使得模型评估变得轻松。它还包含用于训练管理、保存工作成果和记录关键参数的内置处理器。此外,Ignite还支持自定义事件,满足高级用户需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号