Project Icon

japanese-hubert-large

大规模日语语音表示学习模型HuBERT

rinna公司训练的日语HuBERT Large模型采用24层transformer架构,在19,000小时ReazonSpeech语料库上训练。该模型能够提取1024维日语语音特征表示,为语音识别、合成等任务提供基础。研究人员和开发者可利用此开源模型进行各种日语语音处理应用的开发。模型采用Apache 2.0开源协议,使用方便。可通过Hugging Face transformers库轻松加载使用,支持提取日语语音特征。该项目还提供了fairseq格式的检查点文件,方便研究人员进行深入研究和二次开发。

chinese_speech_pretrain - 中文语音预训练模型,wav2vec 2.0和HuBERT的开源实现
GithubHuBERTWenetSpeechwav2vec 2.0中文语音识别开源项目语音预训练模型
chinese_speech_pretrain项目开源了基于WenetSpeech数据集训练的中文语音预训练模型。项目包含wav2vec 2.0和HuBERT的BASE与LARGE版本,均使用1万小时多样化中文语音数据训练。模型在自动语音识别任务中表现优异,尤其适合低资源场景。项目提供模型下载及使用指南,可用于语音识别、语音合成等研究领域。
hubert-base-superb-ks - 基于HuBERT的语音命令词识别与关键词检测模型
GithubHuBERTHuggingfaceSUPERB关键词检测开源项目模型语音识别音频分类
该语音关键词检测系统基于HuBERT预训练模型开发,可识别Speech Commands数据集中的10类预设命令词、静音和未知类别。模型在测试集达到96.72%准确率,支持16kHz采样率音频输入,集成transformers pipeline接口,便于设备端快速部署和调用。
bert-base-japanese-upos - 日语自然语言处理的BERT模型应用
BERTGithubHuggingfacePOS标注Universal Dependencies依存解析开源项目日语模型
此模型在日语维基百科文本上进行预训练,支持词性标注和依存解析等任务。它衍生自bert-base-japanese-char-extended,利用UPOS体系为短单位词标注。通过Python代码,用户能方便地进行文本处理和结构解析,适合希望高效处理日语文本的用户。该模型具有良好的兼容性,可通过Huggingface平台使用。
hubert-large-speech-emotion-recognition-russian-dusha-finetuned - HuBERT模型在俄语语音情感识别上的应用与优化
GithubHuBERTHuggingface俄语开源项目微调模型语音情感识别预训练模型
该项目利用DUSHA数据集对HuBERT模型进行微调,实现了俄语语音情感识别。经优化后的模型在测试集上表现突出,准确率达0.86,宏F1分数为0.81,超越了数据集基准。模型能够识别中性、愤怒、积极、悲伤等情绪类型。项目还提供了简洁的使用示例代码,便于研究人员和开发者将其集成到语音情感分析任务中。
bert-ner-japanese - 日本语固有表达识别,使用BERT模型实现
BERTGithubHuggingface固有表现抽取开源项目日本机器学习模型自然语言处理
本项目利用BertForTokenClassification模型,实现高效的日本语固有表达识别,可识别八种类别,如人名、法人名和地名等,以满足多样化的语言处理需求。该项目基于东北大学的日本语BERT模型和stockmarkteam的Wikipedia数据集进行训练,通过安装transformers库等,即可实现快速识别,适合应用于IT和学术研究领域的文本分析。
sup-simcse-ja-large - 基于BERT的日语句向量模型与文本相似度分析工具
GithubHuggingfaceJSNLIsentence-transformers开源项目文本嵌入日本语文本相似度模型自然语言处理
该模型基于BERT-large-japanese-v2架构开发,通过JSNLI数据集训练完成。模型整合了sentence-transformers和HuggingFace Transformers框架,可实现日语文本的向量化表示和相似度分析。技术特点包括cls池化策略、1024维隐藏层和BFloat16数据格式,适用于日语自然语言处理任务。
reazonspeech-nemo-v2 - 改进后的Conformer架构实现日语长音频自动语音识别
ConformerGithubHuggingfaceNeMoReazonSpeech开源项目日语模型语音识别
reazonspeech-nemo-v2是一个基于改进Conformer架构的日语自动语音识别模型。它采用Longformer注意力机制和RNN-T结构,可处理长达数小时的音频。模型在ReazonSpeech v2.0语料库上训练,参数量为619M。通过reazonspeech库,用户可便捷地使用该模型进行日语语音识别。
japanese-roberta-base - 日语RoBERTa模型适用于掩码语言建模
GithubHuggingfacejapanese-roberta-basetransformers开源项目日语NLP模型模型训练迁移学习
此项目展示了一个经过日本CC-100和维基百科数据集训练的日语RoBERTa模型,专注于掩码语言建模。该模型在12层768隐藏单元的架构中实现了良好的语义预测能力,适合自然语言处理应用,且支持自定义位置编码。
sbert-base-ja - 日语句向量模型:基于BERT的自然语言处理工具
BERTGithubHuggingface句子相似度开源项目日语SNLI数据集日语自然语言处理模型语义表示
sbert-base-ja是一个日语句向量模型,基于BERT架构开发。该模型利用colorfulscoop/bert-base-ja作为预训练基础,并通过日语SNLI数据集进行了微调。它能够将日语文本转化为向量形式,主要应用于句子相似度计算和文本分类等领域。模型采用SentenceTransformer结构,为开发者提供了便捷的API,有助于在多种自然语言处理任务中快速部署和应用。
bert-base-japanese-v2 - 日语BERT预训练模型:全词屏蔽和Unidic分词
BERTGithubHuggingface全词掩码分词开源项目日语预训练模型模型维基百科
bert-base-japanese-v2是基于日语维基百科预训练的BERT模型,采用unidic-lite词典和全词屏蔽策略。模型架构包含12层、768维隐藏状态和12个注意力头。它结合MeCab和WordPiece算法进行分词,词表大小为32768。模型在512个token实例上进行了100万步训练,耗时约5天。该模型适用于多种日语自然语言处理任务,为研究人员和开发者提供了强大的日语语言理解工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号