Project Icon

dictalm2.0-instruct-fine-tuned

优化的希伯来语问答生成模型

本项目提供了一种专门针对希伯来语问答生成而优化的模型,适用于教育和信息化应用。通过从希伯来语维基百科提取数据进行微调,增强了模型生成自然问答对的能力。在使用于敏感领域时,建议引入人工监督以规避潜在训练数据偏见造成的问题。

dictalm2-it-qa-fine-tune - 希伯来语问答生成优化模型
Dicta-ILGithubHebrewHuggingfacetransformers开源项目模型模型微调问答生成
该项目是在dicta-il/dictalm2.0-instruct模型上进行了精细调整,专为生成希伯来语的问答对而设计。该模型由Guy Shapira开发,采用Transformer架构,经过合成及现有Q&A数据集的训练进行优化。通过Hugging Face的Transformers库,可以方便地加载并应用该模型以生成问答对。
dictalm2.0-instruct - 支持对话功能的希伯来语大型语言模型
DictaLM-2.0GithubHuggingface希伯来语开源项目指令微调模型自然语言生成语言模型
通过对DictaLM-2.0模型的指令调优,此项目提升了大型语言模型在希伯来语环境下的指令执行和词汇能力。采用高精度配置和扩展的希伯来语指令数据集,遵循Zephyr-7B-beta的调整方案,专为对话设计,旨在提供流畅的聊天体验。尽管表现出色,但尚未集成内容审核机制,项目期待与社区合作,优化模型在内容监控环境中的应用。
dictalm2.0 - 探索专注于希伯来语词汇与指令优化的生成式语言模型
DictaLM 2.0GithubHuggingface大语言模型希伯来语开源项目文本生成模型预训练
DictaLM-2.0是一种具有70亿参数的预训练生成文本模型,专门用于处理希伯来语文本,增强了词汇和指令功能。模型基于Mistral-7B-v0.1结构,扩充了1000个专属希伯来语词以提升压缩率,并在超过1900亿的自然文本数据上进行持续预训练,包含50%希伯来语和50%英语文本。提供高精度基模型和量化版本,适用于多种应用需求。用户可通过Python代码示例轻松加载和使用。此模型不内含内容审查机制,适合语言模型的专业研究。
dictabert-joint - 基于BERT的希伯来语多任务自然语言处理模型
DictaBERTGithubHuggingface希伯来语开源项目模型自然语言处理语法分析语言模型
DictaBERT-joint是一个针对希伯来语的多任务语言处理模型,集成了前缀分割、形态消歧、词形还原、句法分析和命名实体识别功能。模型提供JSON、UD和IAHLT-UD三种数据格式输出,支持按需初始化不同任务模块。
OLMo-7B-0724-Instruct-hf - 改进自然语言处理任务的问答精度与模型性能
GithubHuggingfaceOLMo开源项目模型模型评估自然语言处理训练数据语言模型
OLMo 7B Instruct是由Allen Institute for AI与多家机构于2024年7月发布的更新版语言模型。此版本通过微调技术优化基础模型的问答能力,基于Dolma和Tulu 2 SFT混合数据集进行训练,提高了绩效和安全性。其自回归Transformer结构适用于精确的英文自然语言处理任务。
hebert-finetuned-hebrew-metaphor - heBERT微调模型实现希伯来语隐喻检测 准确率达95.10%
GithubHuggingfaceheBERT希伯来语开源项目模型模型训练自然语言处理隐喻识别
该项目为基于avichr/heBERT的希伯来语隐喻检测微调模型。模型在HebrewMetaphors数据集上训练,可识别20个希伯来语动词的隐喻用法。经过Adam优化器和线性学习率调度器的训练,模型在验证集上达到95.10%的准确率。这是以色列理工学院电气工程与计算机科学学院研究团队的成果。
alephbert-base - 优化希伯来语自然语言处理的先进语言模型
AlephBERTBERT架构GithubHuggingface希伯来语开源项目模型训练数据语言模型
AlephBERT是一个基于Google BERT架构的希伯来语语言模型。这一模型利用了来自OSCAR、Wikipedia以及Twitter的丰富语料,提升了自然语言处理的表现。训练过程中使用了Masked Language Model损失优化策略,提高了效率和准确性。通过Huggingface的Transformer库,用户能够轻松集成这一模型,满足多种自然语言处理需求。
wav2vec2-xls-r-300m-hebrew - XLS-R微调的希伯来语语音识别模型
GithubHebrewHuggingfaceWav2Vec2XLS-R开源项目微调模型语音识别
该开源项目提供了一个针对希伯来语优化的语音识别模型。基于wav2vec2-xls-r-300m架构,通过两阶段训练方法在私有数据集上进行微调。模型在测试集上实现23.18%的词错误率,展示了特定语言语音识别优化的有效途径。这一模型为希伯来语自动语音识别研究和应用提供了实用工具。
Hebrew-Gemma-11B-V2 - 多语言处理的希伯来语-英语大规模生成模型
11亿参数GithubHebrew-Gemma-11B-V2Huggingface大语言模型开源项目文本生成模型自然语言处理
Hebrew-Gemma-11B-V2是一个以开源形式发布的大规模语言模型,扩展自Google的Gemma-7B架构。通过增量3B的英语和希伯来语文本数据进行扩展训练。模型专注于多项自然语言处理任务,尤其擅长希伯来语的理解和生成。使用者需遵循Google的使用条款,提供的代码示例可以帮助快速在CPU和GPU上运行,同时支持4位精度量化。
Arabic-Orpo-Llama-3-8B-Instruct - 优化Meta-Llama-3模型在阿拉伯语文本生成中的表现
GithubHuggingfacellama3开源项目文本生成模型评估结果语言模型阿拉伯语
本项目利用ORPO技术对Meta-Llama-3-8B-Instruct模型进行了微调,旨在提升其生成阿拉伯语文本的准确性和连贯性。虽然基准测试结果显示基模型略有优势,但经过微调的模型在实际应用中生成的阿拉伯语文本质量更高。训练数据来自2A2I/argilla-dpo-mix-7k-arabic数据集,并通过lighteval工具进行评估,旨在增强英文模型在阿拉伯语言环境下的适应能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号