Project Icon

dictalm2.0-instruct-fine-tuned

优化的希伯来语问答生成模型

本项目提供了一种专门针对希伯来语问答生成而优化的模型,适用于教育和信息化应用。通过从希伯来语维基百科提取数据进行微调,增强了模型生成自然问答对的能力。在使用于敏感领域时,建议引入人工监督以规避潜在训练数据偏见造成的问题。

Humanish-LLama3-8B-Instruct-GGUF - 介绍模型的量化技术实现文本生成性能突破
GithubHuggingfaceHumanish-LLama3-8B-Instruct基准测试开源项目数据集文本生成模型量化
该项目通过llama.cpp进行量化,优化了模型的嵌入和输出权重,使得文本生成更加高效。模型在多个数据集上表现出色,如IFEval数据集测试中达到严格准确率64.98%。项目提供多种文件格式,支持多样化的计算资源和硬件环境,以满足不同的使用需求,包括低内存和ARM芯片的优化场景。
Qwen2-7B-Instruct-abliterated - 权重正交化在文本生成模型性能中的应用
GithubHuggingfaceQwen2-7B-Instruct-abliteratedtransformers大语言模型开源项目权重正交化模型模型评估
本项目通过利用failspy的笔记本对Qwen2-7B-Instruct模型进行权重正交化优化,旨在削弱模型的强拒绝方向。尽管模型在优化后可能仍会出现拒绝请求或误解意图的情况,其在ARC、Winogrande等数据集上的性能仍保持高水平。使用lm-evaluation-harness 0.4.2进行评估,结果显示在ARC、GSM8K、HellaSwag等数据集上的表现优异,适合相关应用。
ALMA-13B-Pretrain - 改进大型语言模型的翻译性能与偏好优化技术
ALMAGithubHuggingfaceLoRA微调对比偏好优化开源项目数据集机器翻译模型
ALMA基于新的翻译模型范式,初步在单语数据上进行精调,接着应用高质量的平行数据进行优化,从而显著提升大型语言模型的翻译效果。其最新版本ALMA-R采用了对比偏好优化(CPO),相较于传统监督精调,进一步提高了翻译的精度,可与GPT-4媲美。尤其是ALMA-13B-LoRA,通过过渡性精调和人类撰写的平行数据,确保了在专业翻译任务中的卓越表现。
dolly-v2-7b - 基于Pythia的开源指令微调语言模型
GithubHuggingfacedolly-v2-7btransformer开源项目指令微调机器学习模型语言模型
dolly-v2-7b是基于Pythia-6.9b架构的指令微调语言模型,通过15000条高质量指令数据训练而成。模型支持问答、分类、生成等核心功能,并采用MIT许可证开放商用。作为开源项目,其突出特点是具备可靠的指令理解能力,为AI应用开发提供了实用的基础模型选择。
Mistral-7B-Instruct-v0.1 - 多种推理方式支持的指令调优大语言模型
GithubHuggingfaceMistral-7B-Instruct-v0.1大语言模型开源项目指令微调机器学习模型自然语言处理
Mistral-7B-Instruct-v0.1是基于Mistral-7B-v0.1的指令调优大语言模型。该模型通过多种公开对话数据集微调,支持mistral_common、mistral_inference和transformers等多种推理方式。它采用分组查询注意力和滑动窗口注意力机制,结合字节回退BPE分词器,提供简单的指令格式,适用于对话生成任务。模型架构优化使其在保持高性能的同时,具备良好的通用性和易用性。
MAmmoTH2-8B-Plus - 基于网络数据的大规模指令微调方法
GithubHuggingfaceMAmmoTH2大语言模型开源项目推理能力模型算法评估语言模型训练
MAmmoTH2项目通过从网络预训练语料中高效收集1000万条指令-回答对来提升大语言模型的推理能力。该方法显著改善了模型在多个推理基准测试上的表现,如MAmmoTH2-7B (Mistral)在MATH和GSM8K测试中的得分大幅提升。这种方法不仅无需特定领域数据训练,还为获取大规模高质量指令数据提供了一种高效的途径,为增强大语言模型的推理能力提供了新的研究方向。
SmolLM-1.7B-Instruct - SmolLM-1.7B-Instruct 模型的技术特性与应用场景分析
GithubHuggingfaceSmolLM开源项目微调性能优化数据集模型语言模型
SmolLM-1.7B-Instruct 是一款包含135M、360M和1.7B参数的小型语言模型,通过高质量数据集微调而成。v0.2版本在主题保持和回答提示方面表现优越。支持多种应用方式,包括本地和浏览器演示。但需注意,该模型可能并非完全精准,建议作为辅助工具应用于常识问答、创造性写作和基础编程等场景。
roberta-base-bne-finetuned-msmarco-qa-es-mnrl-mn - 西班牙语语义搜索和问答优化模型
GithubHuggingfacesentence-transformers句子相似度开源项目模型自然语言处理西班牙语语义搜索
该模型是基于roberta-base-bne进行微调,专为西班牙语问答场景优化。通过将句子和段落转换为768维的密集向量空间,适用于语义搜索和文本聚类等任务。使用MS-MARCO数据集的西班牙语翻译版进行训练,尤其适合处理西班牙语问题。输入文本超过512个词片段时会自动截断,旨在提供精确的问答性能。
LLaMa2lang - 优化LLaMa3-8B模型性能,支持多语言微调和翻译
GPUGithubLLaMa3RAG开源项目翻译语言微调
LLaMa2lang提供便捷脚本,微调LLaMa3-8B模型以适应不同语言。结合RAG和翻译模型,将数据集OASST1翻译为目标语言,进行数据集成和细调,并支持推理。支持DPO和ORPO等优化方法,进一步提升模型回答质量,兼容多个基础模型与翻译架构。
MistralLite - 适用于长文本处理与问答任务的优化语言模型
GithubHuggingfaceMistralLite亚马逊云服务开源项目微调模型模型长文本处理问答系统
MistralLite作为一种优化的语言模型,基于Mistral-7B,通过适应性转子嵌入和滑窗技术,支持32K tokens的长文本处理。它适用于长文本检索、摘要和问答等应用,尤其适合资源有限的环境。可在单个AWS实例轻松部署,支持HuggingFace TGI和vLLM等框架,适合复杂文本场景的精准解析。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号