Project Icon

MLAlgorithms

机器学习算法从零实现的简洁教程

该项目提供简洁清晰的机器学习算法实现代码,适合希望学习算法内部机制或从头实现算法的用户。所有算法均用Python编写,依赖于numpy、scipy和autograd库。包括深度学习、线性回归、逻辑回归、随机森林、支持向量机、K-Means、GMM、KNN、朴素贝叶斯、PCA、因子分解机、受限玻尔兹曼机、t-SNE、梯度提升树和深度Q学习等算法。

C-Sharp - C#算法全面实现 从基础数据结构到高级机器学习
C#GitHubGithub开源项目数据结构算法编程
该开源项目提供了广泛的C#算法实现,涵盖计算机科学、数学、统计学、数据科学和机器学习等领域。项目包含基础算法和加密、数据压缩、图论、数值计算等高级主题,展示了多种实现策略和优化方法。这个综合性的算法库为学习者提供了丰富的实践资源,适合深入理解和应用各类算法。
Ai-Learn - 人工智能学习材料,包括Python基础、机器学习、数据挖掘及深度学习
GithubPython人工智能开源项目数据分析机器学习深度学习
Ai-Learn提供全面的人工智能学习材料,包括Python基础、机器学习、数据挖掘及深度学习。项目通过200多个案例、数据集与教程,协助学习者高效学习与避免常见错误,适合各层次人士。
machine-learning-book - 深入使用PyTorch和Scikit-Learn的机器学习指南
GithubMachine LearningPackt PublishingPyTorchScikit-LearnSebastian Raschka开源项目
该书介绍了如何使用PyTorch和Scikit-Learn进行机器学习,内容包含从数据预处理到高级深度学习模型的实现。主要涵盖分类、回归、聚类、神经网络、自然语言处理、生成对抗网络及强化学习等主题,通过实用的代码示例和实际应用帮助读者掌握机器学习技术。无论是初学者还是有经验的开发者,都可以将其作为理解和应用机器学习的重要参考资料。
awesome-machine-learning - 机器学习框架与资源汇总 多语言开源项目集锦
Github开源项目数据分析机器学习深度学习自然语言处理计算机视觉
Awesome Machine Learning项目汇集了按编程语言分类的机器学习开源资源。涵盖计算机视觉、自然语言处理、深度学习等领域的框架、库和工具,涉及Python、Java、C++等多种语言。此外还收录相关书籍、课程和博客,为机器学习从业者提供全面参考。项目保持活跃更新,欢迎社区贡献优质资源。
God-Level-AI - 涵盖机器学习与个人品牌的视频课程
GithubPythongod level AI开源项目数据结构与算法机器学习深度学习
该项目旨在帮助成为顶尖1%数据与AI专家的个人,通过视频课程和文本内容进行科学方法、算法和系统构建训练。无论是领导者、专业人士还是学生,都需付出相应努力才能达到顶峰。项目内容涵盖Python、数据结构与算法、深度学习、MLOps和个人品牌塑造等,提供全面的知识和实用技巧。
ML-Course-Notes - 机器学习和AI课程讲义共享平台
CMU Neural Nets for NLPCS224NCS25GithubMIT 6.S191Machine Learning Specialization开源项目
本项目汇集和分享机器学习、自然语言处理(NLP)及人工智能(AI)的课程讲义。用户可以在平台上协作整理笔记,涵盖从基础到高级的学习内容,包括监督学习、无监督学习、深度学习、生成模型及强化学习等。讲义来自多位知名讲师的热门课程,如Andrew Ng的机器学习课程、MIT的深度学习导论及CMU的神经网络与NLP课程,内容权威且实用。加入社区,共同提升学习效果。
d2l-zh - 深度学习的全面入门指南
D2L.aiGithub工程技能开源项目数学原理深度学习
《动手学深度学习》是一个免费在线资源,提供概念讲解、数学背景知识和实际代码示例,旨在帮助读者掌握深度学习的原理和应用。该项目致力于培养读者成为能够理解数学原理并实现和改进方法的深度学习应用科学家,适合自学和教学使用,包含可运行的代码和工程技能训练。
ML-DL-scripts - 机器学习和深度学习的全面脚本库 从分类到部署的解决方案
GitHubGithubPython开源项目数据科学机器学习深度学习
ML-DL-scripts是一个综合性的机器学习和深度学习Python脚本库。这个项目涵盖了从分类、回归到聚类和时间序列分析等多个领域,同时提供了PyTorch、Fastai和Keras等主流深度学习框架的使用示例。项目还包括图像处理、自然语言处理和异常检测等实际应用案例,以及基于Docker的模型部署配置。这个代码库为数据科学研究和机器学习应用提供了丰富的技术参考资源。
python-machine-learning-book-3rd-edition - Python与机器学习代码实例——从基础到高级应用
GithubPython Machine LearningTensorFlowscikit-learn开源项目数据处理机器学习
《Python Machine Learning》第三版全面覆盖了数据预处理、分类、回归、深度学习和强化学习等机器学习领域的核心概念。书中提供了Scikit-Learn和TensorFlow的代码示例,帮助读者掌握模型评估、超参数优化和集成学习等技术。本书适合初学者和进阶用户,通过代码仓库可以获得丰富的实践经验。出版信息:Packt Publishing, 2019年12月12日,ISBN-13: 978-1789955750。
hands-on-ml-zh - Sklearn和TensorFlow机器学习指南
GithubPythonSklearnTensorFlow开源项目数据分析机器学习
本指南详细介绍了如何使用Sklearn和TensorFlow进行机器学习,包括在线阅读、Docker镜像、PYPI包和NPM包的多种下载方式,并提供了完整的编译和安装步骤。通过该指南,读者能够学习和掌握数据分析及机器学习的实用技能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号