Project Icon

wav2vec2-xls-r-300m-ftspeech

基于XLS-R-300m的丹麦语语音识别模型 使用FTSpeech数据集微调

该丹麦语自动语音识别模型基于wav2vec2-xls-r-300m在FTSpeech数据集上微调。模型利用1,800小时丹麦议会演讲转录数据训练,在Danish Common Voice 8.0和Alvenir测试集上分别实现17.91%和13.84%的词错误率(WER)。这一性能表明,该模型为丹麦语语音识别任务提供了有效的解决方案。

wav2vec2-large-danish-npsc-nst - 基于XLS-R微调的高性能丹麦语语音识别模型
GithubHuggingfacewav2vec2丹麦语开源项目模型深度学习自然语言处理语音识别模型
wav2vec2-large-danish-npsc-nst是一个针对丹麦语语音识别优化的模型,基于chcaa/xls-r-300m-danish进行微调。经过15轮训练,模型在评估集上表现出色,损失降至0.0587,词错误率仅为6.69%。采用Adam优化器、线性学习率调度和混合精度训练等先进技术,显著提升了模型性能。
wav2vec2-xls-r-300m-cs-250 - 高性能捷克语语音识别模型 实现精准音频转文本
GithubHuggingfaceWav2Vec2开源项目捷克语模型模型训练深度学习语音识别
这是一个基于wav2vec2-xls-r-300m的捷克语语音识别模型,经过Common Voice 8.0等多个数据集的微调。模型在测试集上达到7.3%的词错误率和2.1%的字符错误率,性能优异。它支持16kHz采样率的语音输入,无需额外语言模型即可直接使用。项目提供了简洁的使用示例,并详细记录了训练过程和评估指标。
wav2vec2-xls-r-300m-phoneme - 微调后的Facebook语音处理模型
GithubHuggingfacewav2vec2-xls-r-300m开源项目梯度累积模型模型训练训练超参数语音识别
该模型是在Facebook的wav2vec2-xls-r-300m基础上进行微调,专注于语音处理任务,损失函数为0.3327,字符错误率为0.1332。使用了先进的参数优化和混合精度训练技术,适用于多种语音识别和处理场景。
wav2vec2-xls-r-300m - Facebook开发的大规模多语言预训练语音模型
GithubHuggingfaceXLS-Rwav2vec 2.0多语言模型开源项目模型语音识别预训练模型
wav2vec2-xls-r-300m是Facebook AI研发的大规模多语言预训练语音模型。该模型在436,000小时的未标记语音数据上预训练,涵盖128种语言,采用wav2vec 2.0目标函数,拥有3亿参数。它可应用于自动语音识别、翻译和分类等任务,在CoVoST-2语音翻译基准测试中显著提升了性能。
wav2vec2-xlsr-1b-finnish-lm-v2 - 芬兰语语音识别模型精调,提升语音转文字效果
GithubHuggingfacewav2vec2-xlsr-1b开源项目模型芬兰语训练数据语言模型语音识别
wav2vec2-xlsr-1b-finnish-lm-v2模型基于Facebook AI的多语言预训练模型,为芬兰语自动语音识别进行了优化,使用275.6小时的录音数据进行精调。模型在Common Voice 7.0和FLEURS ASR数据集的测试中取得了4.09%的词错误率(WER)和12.11%的WER。模型配有芬兰语KenLM语言模型用于解码,适合短语音片段处理。其在正式语境中的表现较佳,但普及日常口语和方言的能力有限。可通过训练自定义KenLM以适应特定领域语言。
wav2vec2-large-xlsr-53-swedish - 基于Wav2Vec2的瑞典语语音识别模型 支持16kHz采样率
Common VoiceGithubHuggingfaceWav2Vec2开源项目模型模型训练瑞典语语音识别
这是一个基于Wav2Vec2-Large-XLSR-53在瑞典语数据集上微调的语音识别模型。模型在Common Voice瑞典语测试集上达到14.29% WER和4.93% CER的性能。它可直接使用,无需额外语言模型,适用于16kHz采样率音频。模型经过多阶段预训练和微调,为瑞典语自动语音识别任务提供了有效解决方案。
wav2vec2-large-xlsr-53-finnish - 基于XLSR-53的芬兰语自动语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型芬兰语语音识别
该模型是在wav2vec2-large-xlsr-53基础上微调的芬兰语语音识别系统。它利用Common Voice和CSS10数据集训练,支持16kHz采样率输入。无需额外语言模型,可直接用于芬兰语语音转文本。在Common Voice测试集上,词错率41.6%,字符错率8.23%。项目提供了使用指南和评估方法,适合芬兰语语音识别应用。
wav2vec2-xls-r-300m-mixed - wav2vec2模型在多语言环境下的创新语音识别解决方案
GithubHuggingfaceKeraswav2vec2-xls-r-300m-mixed开源项目模型评估数据集语言模型语音识别
wav2vec2-xls-r-300m-mixed项目在马来语、Singlish和普通话三种语言上进行了微调。依托单GPU(RTX 3090 Ti)完成训练,结合语言模型在CER和WER等指标上表现优异,尤其在普通话识别中取得了最低WER 0.075。这为多语言语音识别的研究与优化提供了一个有效路径。
wav2vec2-xls-r-1b - 大规模多语言语音预训练模型支持128种语言处理
GithubHuggingfaceXLS-R多语言模型开源项目模型语音处理语音识别预训练
Wav2Vec2-XLS-R-1B是Facebook AI开发的大规模多语言语音预训练模型,拥有10亿参数。该模型在436K小时的公开语音数据上训练,涵盖128种语言。在CoVoST-2语音翻译基准测试中平均提升7.4 BLEU分,BABEL等语音识别任务错误率降低20%-33%。适用于语音识别、翻译和分类等任务,需要16kHz采样率的语音输入进行微调。
wav2vec2-xls-r-1b-portuguese - XLS-R 1B微调的葡萄牙语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLS-R开源项目模型葡萄牙语语音识别
该项目基于XLS-R 1B模型微调,专注于葡萄牙语语音识别。模型在Common Voice 8.0等多个数据集上训练,测试集词错误率达8.7%。支持16kHz采样率语音输入,可通过HuggingSound库或自定义脚本使用。项目为葡萄牙语语音识别研究和应用提供了实用工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号