Project Icon

Adan

快速优化深度学习模型的新方法

Adan是一种新型优化算法,结合适应性学习率和Nesterov动量,旨在加速深度学习模型训练。它在计算机视觉、自然语言处理和大规模语言模型等多个领域表现优异。相比Adam和AdamW,Adan通常能使用更大的学习率,训练速度提升5-10倍,同时保持或提高模型精度。目前,Adan已被NVIDIA NeMo、Meta AI D-Adaptation等多个知名深度学习框架和项目采用。

annotated_deep_learning_paper_implementations - 简洁易懂的PyTorch神经网络和算法实现
GANGithubPyTorchReinforcement LearningTransformerlabml.ai开源项目
该项目提供详细文档和解释的简明PyTorch神经网络及算法实现,涵盖Transformer、GPT-NeoX、GAN、扩散模型等前沿领域,并每周更新新实现,帮助研究者和开发者高效理解深度学习算法。
awesome-adapter-resources - 大型预训练神经网络适配器方法工具和论文资源库
AdapterGithubNLPPEFT参数高效开源项目迁移学习
本项目汇集了大型预训练神经网络适配器方法的关键工具和论文。涵盖自然语言处理、计算机视觉和音频处理领域的适配器技术,包括方法、组合技术、分析评估和应用。提供框架工具链接和详细调查研究,是研究人员和从业者的重要参考资源。
nanotron - 高效的大规模模型预训练库
GithubNanotronTransformer并行计算开源项目模型预训练深度学习
Nanotron是一个开源的Transformer模型预训练库。它提供灵活API,支持自定义数据集预训练。该库特点包括高性能、可扩展性强,支持3D并行、专家并行、AFAB和1F1B调度策略、ZeRO-1优化器等先进技术。Nanotron适用于大规模模型训练,旨在提高预训练效率。
OpenAdapt - 具有大型多模态模型 (LMM) 的 AI 优先流程自动化
AI-First Process AutomationGUI AutomationGithubLarge Multimodal ModelsOpenAdaptPython开源项目
OpenAdapt项目利用大型多模态模型(LMMs)实现与桌面和网页图形用户界面的无缝集成。这个开源Python库通过录制和分析用户操作,自动生成任务提示并执行任务回放,减少重复性工作,提高效率。项目特点包括模型无关性、自动提示生成和广泛的系统兼容性,支持所有类型的GUI,包括虚拟化和网页。项目遵守MIT开源许可证。了解更多关于安装、使用和贡献的信息,并加入开发者社区优化流程自动化技术。
llm-action - 提升AI模型训练与推理效率的高级技术与指南
GithubLLM实战LLM训练分布式训练参数高效微调开源项目微调技术
llm-action项目为NVIDIA GPU和Ascend NPU上的大模型训练提供简易工具,详细介绍了LLM训练技术的高效微调和分布式技术。深入探究LLM微调实战与技术原理,并提供实际代码示例以供学习和应用。涵盖普适性框架与多模态微调专项技术,适合开发者与研究人员优化和扩展其AI模型的能力。
gigagan-pytorch - 最新生成对抗网络GigaGAN的实现,优化训练收敛和模型稳定性
AdobeGigaGANGithubLAIONPyTorchStabilityAI开源项目
gigagan-pytorch项目实现了Adobe最新的生成对抗网络GigaGAN,优化了跳层激励和辅助重建损失,以提升训练收敛速度和模型稳定性。项目支持高分辨率上采样器,具备混合精度和多GPU训练功能。适合寻求高效稳定GAN训练的开发者和研究人员。可加入Discord社区,与LAION合作获取更多支持。
stable-fast - 优化HuggingFace Diffusers推理性能的轻量级框架
CUDADiffusersGithubPyTorchStable FastTorchScript开源项目
stable-fast是一个优化HuggingFace Diffusers推理性能的轻量级框架,支持NVIDIA GPU。相比TensorRT和AITemplate需要几十分钟的编译时间,stable-fast仅需几秒钟即可完成模型编译。主要特色包括动态形状、低精度计算和多种算子融合。它还兼容ControlNet和LoRA,并支持最新的StableVideoDiffusionPipeline,是加速PyTorch推理的有效工具。
evotorch - 基于PyTorch的高性能进化计算库
EvoTorchGithubPyTorch优化算法开源项目强化学习进化计算
EvoTorch是一个基于PyTorch的开源进化计算框架,支持黑盒优化、强化学习和监督学习等多种优化问题。它实现了PGPE、CMA-ES和遗传算法等多种进化算法,并通过GPU加速和Ray分布式计算提高优化效率。EvoTorch设计简洁易用,适合解决各类复杂优化问题,为研究人员和工程师提供了强大的工具支持。
amc - 自动化模型压缩技术提升移动设备AI性能
AutoMLGithubImageNetMobileNet剪枝开源项目模型压缩
AMC (AutoML for Model Compression) 是一种创新的自动化模型压缩方法,专为优化移动设备上的深度学习模型而设计。该方法通过自动搜索剪枝策略、导出压缩权重和微调,成功将MobileNet等模型的计算量减少50%,同时维持或提升准确率。AMC不仅适用于MobileNet-V1和V2,还提供PyTorch和TensorFlow格式的压缩模型,为移动设备上的高效AI应用提供了新的可能性。
aideml - 通过自然语言描述生成机器学习任务解决方案的LLM代理
AIDEGithubPython开源项目数据科学机器学习解决方案生成
AIDE是一款通过自然语言描述生成机器学习任务解决方案的LLM代理。该项目在超过60个Kaggle数据科学竞赛中表现出色,平均超越50%的参赛者。AIDE能生成Python脚本并进行迭代优化,提供透明的可视化解决方案树,帮助深入理解实验过程。支持通过命令行或Python脚本使用,并提供多种高级配置,为数据科学家提供高效自动化的解决方案生成与优化工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号