Project Icon

Adan

快速优化深度学习模型的新方法

Adan是一种新型优化算法,结合适应性学习率和Nesterov动量,旨在加速深度学习模型训练。它在计算机视觉、自然语言处理和大规模语言模型等多个领域表现优异。相比Adam和AdamW,Adan通常能使用更大的学习率,训练速度提升5-10倍,同时保持或提高模型精度。目前,Adan已被NVIDIA NeMo、Meta AI D-Adaptation等多个知名深度学习框架和项目采用。

mirage - 多层次张量程序超优化器提升DNN性能
CUDAGithubMirage开源项目张量代数深度神经网络超优化器
作为一款先进的张量代数超优化器,Mirage在深度神经网络(DNN)性能优化领域展现出独特优势。通过在GPU计算层次结构中实现多层次联合优化,该工具能够自动发现并生成高效的张量程序。Mirage不仅可以识别和验证复杂的优化策略,还能通过搜索等效程序空间来开发出性能卓越的自定义内核。这一技术在各类DNN应用中表现出色,如LLAMA-3-70B模型中的组查询注意力机制和低秩适配器优化,生成的CUDA内核性能显著优于传统手动优化方法。
xla - 提升深度学习模型训练与推理效率的开源工具
GithubGoogle CloudPyTorch/XLATPU分布式计算开源项目深度学习
PyTorch/XLA 是一个将 PyTorch 深度学习框架与 XLA 编译器及 Cloud TPUs 连接的 Python 包,提供高效的训练和推理解决方案。用户可以通过 Kaggle 免费试用,并安装支持 TPU 和 GPU 的插件包。项目提供详细的文档和教程,包括使用指南、性能调优方法和 Docker 镜像使用说明。鼓励用户通过 issue 提交反馈和建议,欢迎开源贡献。
efficient-kan - Kolmogorov-Arnold网络的高效实现方案
GithubKANKolmogorov-Arnold Network优化实现开源项目神经网络稀疏化
efficient-kan是一个开源项目,为Kolmogorov-Arnold神经网络(KAN)提供高效实现。项目重构了计算方法,大幅降低内存消耗并提升计算效率。通过采用权重L1正则化和可选的独立比例B样条功能,项目在保持兼容性的同时优化了性能。最新更新改进了参数初始化,在MNIST数据集上显著提升了模型表现。
AI-Optimizer - 涵盖从无模型到基于模型,从单智能体到多智能体的多种算法的多功能深度强化学习平台
AI-OptimizerGithub多智能体强化学习开源项目深度强化学习离线强化学习自监督学习
AI-Optimizer是一款多功能深度强化学习平台,涵盖从无模型到基于模型,从单智能体到多智能体的多种算法。其分布式训练框架高效便捷,支持多智能体强化学习、离线强化学习、迁移和多任务强化学习、自监督表示学习等,解决维度诅咒、非平稳性和探索-利用平衡等难题,广泛应用于无人机、围棋、扑克、机器人控制和自动驾驶等领域。
daam - 解释稳定扩散模型的跨注意力归因图方法
ColabDAAMGithubHugging FacePyTorchStable Diffusion开源项目
这篇文章介绍了一种基于跨注意力机制的方法——注意力归因图(DAAM),用于解析稳定扩散模型。内容包括DAAM在命令行界面和库中的实际应用示例,以及在HuggingFace平台上的在线演示。文章展示了如何生成与单词关联的热力图,支持Stable Diffusion XL (SDXL)和Diffusers 0.21.1版本的模型。还提供了PyTorch安装指南和DAAM快速入门教程,帮助用户实现和探索模型结果。文章中还包括相关视频资源和扩展工具的链接,供用户参考。
fast-DiT - 改进PyTorch实现的可扩展扩散模型转换器
DiTGithubPyTorchTransformer图像生成开源项目扩散模型
fast-DiT 项目提供了扩散模型转换器(DiT)的改进 PyTorch 实现。该项目包含预训练的类条件 DiT 模型、Hugging Face Space 和 Colab 笔记本,以及优化的训练脚本。通过采用梯度检查点、混合精度训练和 VAE 特征预提取等技术,显著提升了训练速度和内存效率。这一实现为研究人员和开发者提供了探索和应用扩散模型的有力工具。
tinygrad - 简化深度学习和加速器开发的轻量级框架
Githublazinesstinygrad加速器支持开源项目深度学习框架神经网络
tinygrad是一个轻量级深度学习框架,定位于PyTorch和micrograd之间。其极简设计使其成为最易添加新加速器的框架之一,支持推理和训练功能。该框架能够运行LLaMA和Stable Diffusion等复杂模型,并具有延迟计算等特性。tinygrad支持GPU、CUDA、METAL等多种加速器,且易于扩展。目前处于alpha阶段,但发展迅速,有望在未来推出专用芯片。
TADA - 基于文本生成高品质可动画3D数字角色
3D头像生成GithubTADA人工智能动画化角色开源项目文本到3D模型
TADA是一个基于AI的系统,通过文本描述生成高质量、可动画化的3D数字角色。生成的角色具有精细的几何结构和纹理,可直接用于动画制作和渲染。该系统支持大规模角色资产创建,并允许通过自然语言编辑角色特征。TADA为游戏开发、电影制作和虚拟现实等领域提供了创新的角色创作解决方案。
ColossalAI - 提升大型AI模型训练的效率和可访问性
AI加速Colossal-AIGithub人工智能分布式训练大模型并行训练开源项目热门
Colossal-AI致力于使大型AI模型的训练更加经济、快速且易于获取。通过支持多种并行策略,包括数据并行、流水线并行、张量并行和序列并行,Colossal-AI可以大幅提高大规模模型训练的速度。此外,还集成了异构训练和零冗余优化器技术,使得在多GPU集群上的训练过程更加高效和灵活。Colossal-AI通过这些先进的功能,已被广泛应用于生产和研究场景,显著推动了AI技术的进步和应用。
NATTEN - 高效实现多维滑动窗口自注意力的开源库
GithubNATTENNeighborhood Attention开源项目深度学习自注意力机制计算机视觉
NATTEN是一个开源库,专门用于快速实现Neighborhood Attention。该项目支持1D、2D和3D问题空间,提供naive、GEMM以及新型Fused Neighborhood Attention (FNA)等多种后端实现。FNA引入反向传播支持,显著提高了模型训练效率。NATTEN兼容PyTorch 2.0及更高版本,同时支持CPU和CUDA后端,并实现了因果掩码、可变参数和相对位置偏置等功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号