Project Icon

LAVIS

多任务语言与视觉模型的统一接口和便捷数据下载工具

LAVIS是一款用于语言与视觉智能研究的Python库,提供统一接口,支持图像文本预训练、检索和视觉问答等10多种任务,并包含20多个数据集和30多个预训练模型。其模块化设计和自动下载工具简化了数据准备和模型训练,是开发多模态应用的理想选择。

ViP-LLaVA - 改进大型多模态模型的视觉提示理解能力
CVPR2024GithubViP-LLaVA多模态模型开源项目视觉提示视觉语言模型
ViP-LLaVA项目旨在提升大型多模态模型对任意视觉提示的理解能力。通过在原始图像上叠加视觉提示进行指令微调,该方法使模型能更好地处理多样化的视觉输入。项目还开发了ViP-Bench,这是首个零样本区域级基准,用于评估多模态模型性能。ViP-LLaVA提供完整的训练流程、模型权重和演示,为视觉语言模型研究提供了有力支持。
Video-LLaVA-7B-hf - 基于LLM的统一视觉模型实现图像和视频的智能处理
GithubHuggingfaceVideo-LLaVA多模态模型开源项目模型视觉识别视频分析语言模型
Video-LLaVA是一个基于Vicuna-13b的开源多模态模型,通过统一的视觉表示编码器实现图像和视频内容的并行处理。该模型采用语言对齐投影方式,无需图像-视频配对数据即可完成训练。模型支持图像和视频的混合输入,可应用于内容理解、问答和描述等视觉分析任务。
llava-v1.6-vicuna-13b-hf - 多模态聊天机器人:增强图像识别和常识推理能力
GithubHuggingfaceLLaVa-Next图像文本问答多模态开源项目模型生成优化视觉编码器
LLaVa-1.6在提升图像分辨率和视觉指令数据集的基础上,增强了光学字符识别(OCR)和常识推理能力。整合了大型语言模型与视觉编码器,可用于图像描述、视觉问答和多模态聊天等应用。通过优质数据组合和动态高分辨率支持复杂的应用场景,优化算法效率,利用4位量化和Flash-Attention 2提升生成速度,使其成为多模态AI的一种先进工具。
ALLaVA - GPT4V合成数据集助力轻量级视觉语言模型训练
ALLaVAGPT-4VGithub开源项目微调数据集视觉语言模型
ALLaVA项目推出大规模GPT4V合成数据集,旨在促进轻量级视觉语言模型的训练。项目发布了ALLaVA-Phi3-mini-128k、ALLaVA-StableLM2-1_6B和ALLaVA-Phi2-2_7B等多个模型版本,可直接从Hugging Face仓库加载。ALLaVA-4V数据集整合了LAION和Vision FLAN的图像标注与指令数据,以及GPT-4-Turbo生成的文本指令,总样本量超过140万。这一资源为视觉语言模型研究提供了丰富的训练数据和预训练模型,有望推动该领域的进一步发展。
blip-vqa-base - BLIP视觉语言预训练模型实现理解与生成双重任务
BLIPGithubHuggingface图像描述图像文本检索开源项目模型视觉语言预训练视觉问答
BLIP是一种创新的视觉语言预训练框架,兼顾视觉语言理解和生成任务。它采用引导式方法处理网络噪声数据,在图像文本检索、图像描述和视觉问答等领域取得了领先成果。此外,BLIP具有优秀的泛化能力,可直接应用于视频语言任务。该模型为视觉语言的统一理解和生成奠定了坚实基础,推动了相关技术的发展。
MoE-LLaVA - 高效视觉语言模型的新方向
GithubMoE-LLaVA多模态学习大视觉语言模型开源项目性能表现稀疏激活
MoE-LLaVA项目采用混合专家技术,实现了高效的大规模视觉语言模型。该模型仅使用3B稀疏激活参数就达到了与7B参数模型相当的性能,在多项视觉理解任务中表现优异。项目提供简单的基线方法,通过稀疏路径学习多模态交互,可在8张A100 GPU上1天内完成训练。MoE-LLaVA为构建高性能、低参数量的视觉语言模型探索了新的方向。
blip-itm-base-coco - BLIP模型革新视觉语言理解和生成技术
BLIPGithubHuggingface图像描述图像文本匹配多模态模型开源项目模型视觉语言预训练
BLIP是一个创新的视觉语言预训练框架,通过引导式方法有效利用网络数据。该模型在图像-文本检索、图像描述和视觉问答等任务上表现出色,并能零样本迁移到视频-语言任务。BLIP不仅提高了视觉语言理解和生成的性能,还为这一领域的统一应用开创了新的可能性。
Llama-3-VILA1.5-8B - 视觉语言模型支持多图像推理和边缘计算
GithubHuggingfaceVILA图文理解多模态大模型开源项目模型视觉语言模型边缘计算
Llama-3-VILA1.5-8B是一款基于大规模交错图像-文本数据预训练的视觉语言模型。该模型具备多图像推理、情境学习和视觉思维链等功能,可部署于边缘设备。在12个基准测试中,包括5个学术视觉问答和7个指令跟随测试,Llama-3-VILA1.5-8B展现了优秀性能。这一模型为研究人员和AI爱好者提供了进行大型多模态模型和聊天机器人研究的有力工具。
VLM_survey - 用于视觉任务的 AWESOME 视觉语言模型集合
GithubVision-Language Models开源项目数据集知识蒸馏视觉识别任务预训练方法
本页面详尽介绍了视觉语言模型(VLM)在视觉识别任务中的应用和发展。内容涵盖VLM的起源、常用架构、预训练目标、主流数据集及不同的预训练方式、迁移学习和知识蒸馏方法,并针对这些方法进行了详细的基准测试和分析。页面还讨论了未来研究的挑战和方向,让用户掌握VLM技术在图像分类、对象检测和语义分割等任务中的最新应用进展。
LLaVA-Plus-Codebase - 多模态智能助手的工具使用与学习指南
GithubLLaVALLaVA-PlusVicuna多模态开源项目视觉助手
该项目介绍了LLaVA-Plus如何提升大语言和视觉助手的工具使用能力。通过代码示例、安装说明和使用指南,用户可以快速掌握运行和训练LLaVA-Plus模型的方法,并进行推理和评估。该项目适用于需要结合视觉任务和语言模型的研究人员和开发者,提供了多个知名工具的整合与使用说明,帮助用户全面了解和应用这些工具执行多模态任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号