Project Icon

stsb-bert-tiny-openvino

基于BERT的轻量级句子相似度和语义搜索模型

stsb-bert-tiny-openvino是一个轻量级的自然语言处理模型,基于sentence-transformers框架开发。模型将文本映射为128维向量,可用于文本相似度分析、聚类和语义检索。支持sentence-transformers和HuggingFace两种调用方式,配备完整的使用示例和文档。通过CosineSimilarityLoss训练优化,在保持高效处理能力的同时确保了模型的轻量化。

multi-qa-MiniLM-L6-dot-v1 - 多语言句子相似度模型,支持语义搜索
GithubHuggingfacemulti-qa-MiniLM-L6-dot-v1句子嵌入句子相似度开源项目模型自监督对比学习语义搜索
multi-qa-MiniLM-L6-dot-v1是一个专为语义搜索设计的句子嵌入模型,将文本转化为384维的密集向量。此模型训练于215M个问题和答案对,可处理多种数据来源。用户可通过sentence-transformers轻松加载模型进行查询和文档编码,从而计算点积相似度分数,实现相关性排序。除了基础功能外,该模型同样支持HuggingFace Transformers的复杂上下文嵌入处理,能有效提升语义搜索效率,适用于不超过512词片的文本。
sentence-t5-xl - 高维向量映射模型实现句子和段落的精确表示
GithubHuggingfacesentence-transformers开源项目文本向量化模型深度学习自然语言处理语义相似度
sentence-t5-xl是一个基于sentence-transformers框架的模型,可将句子和段落映射为768维向量。它在句子相似度任务中表现优异,但语义搜索效果一般。该模型由TensorFlow的st5-3b-1转换而来,使用T5-3B模型的编码器,以FP16格式存储权重。通过sentence-transformers库,用户可以方便地将其集成到各种自然语言处理项目中。
msmarco-MiniLM-L-12-v3 - 高效语句嵌入模型,适用于语义搜索和文本相似度任务
GithubHuggingfacesentence-transformers向量嵌入开源项目模型特征提取自然语言处理语义相似度
msmarco-MiniLM-L-12-v3是一个sentence-transformers模型,将句子和段落映射到384维密集向量空间。该模型基于BERT架构,使用平均池化,适用于聚类和语义搜索。它可通过sentence-transformers或HuggingFace Transformers库使用,高效生成句子嵌入。这个模型在多个基准测试中表现良好,为自然语言处理应用提供语义表示。
ko-sbert-nli - 基于SBERT架构的韩语语义相似度模型实现文本向量化
GithubHuggingfacesentence-transformers开源项目文本嵌入模型自然语言处理语义搜索韩语模型
该模型基于sentence-transformers框架,将韩语文本转化为768维向量。经KorNLI数据集训练,在KorSTS评估中获83.16%相关性。适用于句子编码、语义搜索和文本聚类,支持Python接口和pip安装。
sentence_similarity_spanish_es - 基于sentence-transformers的西班牙语句子相似度模型
GithubHuggingfacesentence-transformers开源项目机器学习模型自然语言处理西班牙语模型语义相似度
该模型基于sentence-transformers框架开发,能够将西班牙语句子和段落转换为768维向量。主要应用于句子相似度计算、聚类分析和语义搜索等任务。模型在STS基准测试中表现优异,提供简洁的Python接口。它以dccuchile/bert-base-spanish-wwm-cased为基础模型,针对西班牙语自然语言处理进行了优化。
NoInstruct-small-Embedding-v0 - 小型嵌入模型在MTEB基准测试中展现卓越性能
GithubHuggingfacesentence-transformers信息检索嵌入模型开源项目文本分类模型相似度计算
NoInstruct-small-Embedding-v0是一个小型嵌入模型,在MTEB基准测试中展现出优秀性能。该模型在文本相似度、分类和检索任务上表现突出,特别是在亚马逊评论分类中。基于sentence-transformers库开发,支持特征提取、句子相似度计算等多种NLP任务。在多个数据集上的出色表现体现了其在实际应用中的潜力。
bert_uncased_L-4_H-512_A-8 - BERT小型模型为资源受限环境提供高效自然语言处理解决方案
BERTGLUEGithubHuggingface开源项目模型模型压缩知识蒸馏自然语言处理
BERT小型模型是为计算资源受限环境设计的自然语言处理工具。它保留了标准BERT架构和训练目标,但模型规模更小,适用于多种应用场景。这种模型在知识蒸馏中表现出色,可利用更大、更精确的模型生成微调标签。其目标是促进资源有限机构的研究工作,并鼓励学术界探索模型创新的新方向,而非仅仅增加模型容量。
e5-small - 高效轻量的句子相似度计算模型
GithubHuggingfaceMTEBsentence-transformers开源项目性能评估数据集机器学习模型
e5-small是一个轻量级神经网络模型,专注于句子相似度计算。该模型在文本分类、检索和聚类等多项基准测试中表现优异。支持多语言处理,适用于需要高效文本嵌入的场景。其轻量设计在保持性能的同时减少计算资源消耗,适合各类文本相似度应用。
st-codesearch-distilroberta-base - 基于DistilRoBERTa的代码搜索嵌入模型
DistilRoBERTaGithubHuggingfacesentence-transformers代码搜索向量嵌入开源项目模型语义搜索
st-codesearch-distilroberta-base是一个基于DistilRoBERTa的句子转换器模型,可将文本映射到768维向量空间。该模型在code_search_net数据集上训练,专门用于文本到代码的搜索任务。它支持语义搜索和聚类等应用,并提供简单的API接口。用户可以利用这个模型生成文本嵌入,实现代码搜索和相似度比较等功能。这个预训练模型为代码检索和自然语言处理任务提供了有力工具。
rubert-tiny - 小型化俄英双语BERT模型支持多种自然语言处理任务
BERTGithubHuggingface句向量开源项目模型模型压缩深度学习自然语言处理
rubert-tiny是一个经过蒸馏的轻量级BERT模型,针对俄语和英语优化。模型大小仅45MB,参数量1200万,较基础BERT小10倍且速度更快。支持掩码填充、特征提取和句子相似度等NLP任务,适用于命名实体识别和情感分类等简单俄语任务。通过多语言语料库训练,可提供俄英双语对齐的句向量表示。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号