Project Icon

stsb-bert-tiny-openvino

基于BERT的轻量级句子相似度和语义搜索模型

stsb-bert-tiny-openvino是一个轻量级的自然语言处理模型,基于sentence-transformers框架开发。模型将文本映射为128维向量,可用于文本相似度分析、聚类和语义检索。支持sentence-transformers和HuggingFace两种调用方式,配备完整的使用示例和文档。通过CosineSimilarityLoss训练优化,在保持高效处理能力的同时确保了模型的轻量化。

phrase-bert - 短语嵌入与语料库分析的提升方案
GithubHuggingfacePhrase-BERT句子相似性开源项目模型特征提取短语嵌入语料库探索
Phrase-BERT项目利用BERT改进短语嵌入,应用于语料库分析,通过sentence-transformers库轻松实现模型安装与使用,支持短语点积及余弦相似度计算。项目包含五个短语语义评估任务,提供训练与微调Phrase-BERT所需的代码和数据集,使用Python脚本详细展现使用方法、训练和评估步骤,便捷用户进行多任务扩展。
text2vec - 多模型文本向量化工具,支持多语言文本匹配分析
BERTGithubText2vec开源项目文本向量化文本相似度模型训练
text2vec工具实现了多种文本向量表示和相似度计算模型,如Word2Vec、BERT、Sentence-BERT和CoSENT。最新版本增加了多卡推理和命令行工具,方便用户批量处理文本向量化。它在中英文测试集上的表现优秀,尤其新版中文匹配模型在短文本区分上有显著提升。该工具为中文和多语言文本匹配提供了丰富的支持,能够满足各种文本语义分析任务的需求。
labse_bert - 多语言BERT句子嵌入模型及其应用
GithubHuggingfaceLABSE BERT句子嵌入多语言处理开源项目模型模型应用自然语言处理
LaBSE BERT是一种语言无关的句子嵌入模型,由Fangxiaoyu Feng等人开发并在TensorFlow Hub上提供。该模型能够将文本转换为高效的向量表示,适用于多语言文本处理。利用AutoTokenizer和AutoModel加载模型,并通过mean_pooling方法获取句子嵌入,以增强文本分析和信息检索等领域的性能。使用PyTorch实现编码和处理,多语言文本分析更加轻松。
paraphrase-multilingual-MiniLM-L12-v2 - 多语言句子相似性和语义聚类的高效工具
BERT模型GithubHuggingfacesentence-transformers开源项目模型特征提取语义搜索语句相似性
paraphrase-multilingual-MiniLM-L12-v2模型是sentence-transformers框架的一部分,能够将句子转换为384维的密集向量。该模型支持多语言功能,适合进行句子聚类和语义搜索,并能通过HuggingFace Transformers应用。在此模型的优化下,您可在多语言环境(如法语、葡萄牙语、中文)中高效实现句子相似性比较和特征提取,并利用其简便的安装和使用过程提升操作效率。
sentence-bert-base-italian-xxl-uncased - 提升语义分析与聚类效果的意大利语句子相似度模型
GithubHuggingfacesentence-transformers句子嵌入句子相似性开源项目模型模型训练自然语言处理
这个意大利语句子相似度模型能将文本映射到768维度的密集向量空间,适用于语义搜索和语句聚类。其基于dbmdz/bert-base-italian-xxl-uncased构建,为文本理解与分析提供支持。在sentence-transformers库的支持下,模型的安装与使用变得极为简便,即使不使用该库,也可通过HuggingFace Transformers实现。其性能在Sentence Embeddings Benchmark中经过自动化评估,可供参考。
ColBERT - 基于BERT的快速大规模文本检索模型
BERTColBERTGithub信息检索向量相似度开源项目自然语言处理
ColBERT是一种基于BERT的检索模型,能在数十毫秒内实现大规模文本集合的高效搜索。该模型采用细粒度的上下文后期交互技术,将段落编码为令牌级嵌入矩阵,在保持检索质量的同时提高效率。ColBERT具备索引、检索和训练功能,适用于多种信息检索任务。模型提供预训练checkpoint和Python API,方便研究人员和开发者在实际项目中快速应用。
text-embeddings-inference - 快速上手Ai理论及应用实战
API文档BERTDockerGithubtext-embeddings-inference开源项目模型部署
Text Embeddings Inference 为文本嵌入模型提供高效的推理服务,支持多种模型配置,适合AI及深度学习需求。快速部署和卓越的服务器级性能使其成为企业和研究机构面对大规模文本处理和复杂查询时的理想选择,支持包括 [BERT](https://link-to-bert) 和 [RoBERTa](https://link-to-roberta) 在内的多种模型,并兼容 Docker 和完备的 API 文档。
sentence-transformers - 多语言文本和图像嵌入向量生成框架
GithubSentence Transformers向量表示开源项目深度学习自然语言处理预训练模型
sentence-transformers是一个基于transformer网络的框架,用于生成句子、段落和图像的向量表示。该项目提供了多语言预训练模型,支持自定义训练,适用于语义搜索、相似度计算、聚类等场景。这个开源工具在自然语言处理和计算机视觉任务中表现出色,为研究人员和开发者提供了便捷的嵌入向量生成方案。
BERTopic - 高效的Transformers主题建模,支持多种模式
BERTopicGithubPythonc-TF-IDFtransformers主题建模开源项目
BERTopic是一种利用Transformers和c-TF-IDF进行主题建模的技术,能够生成易于解释的密集主题聚类,同时保留关键词描述。该项目支持多种主题建模方法,如有监督、半监督和无监督模式,具有模块化和高扩展性。丰富的可视化功能和多种表示方法进一步支持深入分析。BERTopic还兼容多种嵌入模型,并支持多语言处理,适应不同应用场景。
openvino - 提升深度学习模型部署与优化的开源工具包
AI应用GithubOpenVINO开源项目性能提升模型部署深度学习模型优化热门
OpenVINO™是一款开源软件工具包,用于优化和部署深度学习模型。它支持多种框架如TensorFlow、PyTorch等,能在从边缘到云的多种平台上高效部署。此工具包还包含大量社区资源和教程,助力提升计算机视觉、自然语言处理等领域的模型性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号