Project Icon

oneformer_ade20k_dinat_large

OneFormer单一模型在多任务图像分割中实现卓越表现

OneFormer模型借助单一架构和模块在ADE20k数据集上进行训练,适用于语义、实例和全景分割。通过使用任务令牌,该模型能够动态调整以满足不同任务要求,不仅显著优化了分割效果,还具备替代专门化模型的潜力。

QFormer - 四边形注意力机制提升视觉Transformer性能
GithubVision Transformer图像分类开源项目注意力机制目标检测计算机视觉
QFormer是一种创新的视觉Transformer模型,采用四边形注意力机制替代传统窗口注意力。该模型通过可学习的四边形回归模块,将默认窗口转换为目标四边形进行计算,从而更好地建模不同形状和方向的目标。在图像分类、目标检测、语义分割和人体姿态估计等多项视觉任务中,QFormer在保持低计算成本的同时,性能显著优于现有的视觉Transformer模型。
LLFormer - 高效处理超高清低光照图像的Transformer模型
AAAIGithubTransformer低光照图像增强开源项目超高清
LLFormer是一种新型Transformer模型,专门用于增强超高清低光照图像。通过创新的轴向多头自注意力和跨层注意力融合机制,LLFormer能高效处理4K和8K分辨率图像。在UHDLOL基准测试中,该模型性能显著优于现有方法。LLFormer不仅提升了图像质量,还能改善低光照条件下人脸检测等下游任务的效果。
segformer-b3-fashion - 高效精准的时尚服饰语义分割模型
GithubHuggingfaceSegFormer图像分割开源项目服装识别模型深度学习计算机视觉
SegFormer-b3-fashion是一个基于SegFormer架构的语义分割模型,针对时尚服饰领域进行了优化。该模型可识别和分割图像中46种不同的服饰元素,涵盖衣物、配饰和细节特征。它采用transformer技术,在保持精确度的同时提供高效设计,适用于时尚分析和虚拟试衣等应用场景。
seggpt-vit-large - 基于上下文的单次图像分割解决方案
GithubHuggingfaceSegGPTTransformer图像分割开源项目模型生成模型语义分割
SegGPT项目采用了类似GPT的Transformer模型,它可以在提供输入图像和提示的情况下生成分割掩码,并在COCO-20和FSS-1000数据集上实现了优异的单次图像分割效果。此模型适合用于需要高精度和上下文整合的图像分割应用场景。
poolformer_m36.sail_in1k - MetaFormer架构的PoolFormer图像分类与特征提取模型
GithubHuggingfaceImageNet-1kMetaFormerPoolFormertimm图像分类开源项目模型
poolformer_m36.sail_in1k是一个基于MetaFormer架构的PoolFormer图像分类模型,在ImageNet-1k数据集上训练。该模型拥有5620万参数,支持图像分类、特征图提取和图像嵌入等功能。它能高效处理224x224大小的图像,在保持性能的同时降低计算复杂度。研究人员和开发者可通过timm库轻松使用这一预训练模型,应用于多种计算机视觉任务。
MixFormer - 基于迭代混合注意力的端到端目标跟踪框架
GithubMixFormer开源项目注意力机制深度学习目标追踪计算机视觉
MixFormer是一种创新的端到端目标跟踪框架,采用目标-搜索混合注意力(MAM)骨干网络和角点头部结构,实现了无需显式集成模块的紧凑跟踪流程。这种无后处理方法在LaSOT、GOT-10K和TrackingNet等多个基准测试中表现卓越,并在VOT2020上取得0.584的EAO成绩。项目开源了代码、模型和原始结果,为目标跟踪研究领域提供了宝贵资源。
panoptic-segment-anything - 零样本全景分割融合SAM、Grounding DINO和CLIPSeg的创新方法
CLIPSegGithubGrounding DINOSAM实例分割开源项目零样本全景分割
panoptic-segment-anything项目提出了一种创新的零样本全景分割方法。该方法巧妙结合Segment Anything Model (SAM)、Grounding DINO和CLIPSeg三个模型,克服了SAM在文本感知和语义分割方面的局限性。项目提供Colab notebook和Hugging Face Spaces上的Gradio演示,方便用户体验这一pipeline。此外,预测结果可上传至Segments.ai进行微调,为计算机视觉研究开辟了新的可能性。
GLaMM-GranD-Pretrained - 基于GranD数据集的区域级理解和分割预训练模型
GLaMM-GranD-PretrainedGithubHuggingface图像分割大规模数据集开源项目模型深度学习计算机视觉
GLaMM-GranD-Pretrained是基于GranD数据集预训练的模型,专注于区域级理解和分割掩码生成。GranD数据集包含7.5百万个独特概念和810百万个带分割掩码的区域,通过自动化注释流程生成。该模型为计算机视觉任务提供高级像素分割能力。研究者可通过GitHub或Hugging Face获取模型,并参考相关论文和项目页面深入了解。
urban_seg - 针对初学者的遥感图片语义分割项目
Githubunicom模型urban_seg多GPU训练开源项目语义分割遥感图片
一个针对初学者的遥感图片语义分割项目,使用在4亿张图片上预训练的unicom模型。该模型在遥感分割中表现出色,仅需4张图片训练即可取得良好效果。提供简单的单GPU和多GPU训练代码,帮助快速上手并提升性能。
actionformer_release - 基于Transformer的高精度动作时刻定位模型
ActionFormerActivityNetGithubTHUMOS14Transformer开源项目时序动作定位
actionformer_release是一个基于Transformer的动作定位模型,能够检测动作实例的起止点并识别动作类别。在THUMOS14数据集上,该模型取得了71.0%的mAP,超越之前的最佳模型14.1个百分点,并首次突破60%的mAP。此外,该模型在ActivityNet 1.3和EPIC-Kitchens 100数据集上也取得了优异成绩。该项目设计简洁,通过局部自注意力机制对未剪辑视频进行时间上下文建模,并可一次性精确定位动作时刻。代码和预训练模型已开源,可供下载和试用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号