Project Icon

X-Adapter

实现旧版扩散模型插件通用兼容的适配器

X-Adapter是一个通用适配器,使旧版扩散模型(如SD1.5)的预训练插件能够直接与升级后的模型(如SDXL)兼容,无需重新训练。该项目支持ControlNet、LoRA等多种插件,提供了设置指南、推理代码和使用示例,提高了模型升级后的灵活性和效率。这为研究人员和开发者提供了实用的工具和资源。

Stable-Diffusion - 关于稳定扩散和SDXL的专家级教程
Automatic1111 Web UIDreamBoothGithubLoRAStable Diffusion开源项目教程视频
探索Dr. Furkan Gözükara领导的Stable Diffusion项目。通过全面的高级教程视频,涵盖自动化Web UI安装至模型训练,与我们一起从基础到专家,深入理解并运用Stable Diffusion技术。包含Google Colab和Automatic1111 Web UI的实操演示,适合所有技术爱好者。
DiffusionKit - 为Apple Silicon优化的扩散模型推理框架
AI绘图Core MLDiffusionKitGithubMLX图像生成开源项目
DiffusionKit是一个针对Apple Silicon芯片优化的扩散模型工具包。该项目包含用于将PyTorch模型转换为Core ML格式的Python组件,以及用于设备端推理的Swift组件。通过集成MLX,DiffusionKit实现了高效的图像生成,并为Stable Diffusion 3和FLUX等模型提供了简洁的命令行和API接口。这一工具为在苹果设备上进行AI图像生成研究和应用开发提供了实用解决方案。
k-diffusion - 扩散模型框架支持多种采样算法和模型架构
GithubPyTorchk-diffusiontransformer开源项目注意力机制生成模型
k-diffusion是一个基于PyTorch的扩散模型实现框架。它支持分层Transformer模型、多种采样算法和Min-SNR损失加权。该框架提供模型包装器、CLIP引导采样功能,以及对数似然、FID和KID等评估指标的计算。k-diffusion为扩散模型研究和应用提供了实用工具。
AsyncDiff - 通过异步去噪实现扩散模型并行加速
AsyncDiffGithub加速推理开源项目异步去噪扩散模型模型并行
AsyncDiff是一种创新的扩散模型加速方案,通过将模型分割并在多设备上异步并行处理来提高效率。这种方法巧妙利用了扩散步骤间的相似性,将顺序去噪转变为异步过程,有效打破了组件间的依赖关系。AsyncDiff不仅大幅降低了推理时间,还保持了生成质量。目前已支持Stable Diffusion、ControlNet和AnimateDiff等多种主流扩散模型。
HiDiffusion - 无需训练即可提升扩散模型分辨率和速度的方法
AI绘图GithubHiDiffusion图像生成开源项目扩散模型高分辨率
HiDiffusion是一种提高预训练扩散模型分辨率和速度的方法,无需额外训练。通过添加单行代码即可集成到现有扩散管道中。它支持文本到图像、图像到图像和修复等多种任务,适用于Stable Diffusion XL、Stable Diffusion v2等主流模型。HiDiffusion还兼容ControlNet等下游任务,为图像生成提供更高质量和效率。
swift-coreml-diffusers - Swift应用中集成Core ML实现Stable Diffusion模型
Core MLGithubStable DiffusionSwiftiOSmacOS开源项目
swift-coreml-diffusers项目展示如何在Swift应用中集成Apple的Core ML Stable Diffusion实现。该应用支持macOS和iOS设备,采用DPM-Solver++调度器提高性能。首次启动时自动下载量化Core ML模型,可利用CPU、GPU和Neural Engine加速。项目适合快速迭代开发,也可作为在Apple设备上实现AI图像生成的示例代码。
modular-diffusion - 灵活可扩展的PyTorch扩散模型框架
GithubModular DiffusionPyTorch开源项目扩散模型机器学习模块化设计
Modular Diffusion是一个基于PyTorch的模块化扩散模型框架,为设计和训练自定义扩散模型提供了简洁的API。该框架支持多种噪声类型、调度类型、去噪网络和损失函数,并提供了预构建模块库。Modular Diffusion适用于图像生成和非自回归文本合成等多种应用场景,适合AI研究人员和爱好者使用。其模块化设计简化了新型扩散模型的创建和实验过程。
swift-diffusion - Swift重新实现的Stable Diffusion模型
AI绘图GithubStable DiffusionSwift Diffusion开源项目深度学习移动设备优化
Swift重新实现的单文件Stable Diffusion模型,包含CLIP文本处理、UNet扩散和解码器等核心组件。项目致力于在移动设备上运行Stable Diffusion,通过内存优化和性能提升,实现与原始Python版本相当的效果。目前已完成主要模型移植,为移动AI应用开发提供新的可能。
diffusion_policy - 扩散模型驱动的机器人控制算法实现复杂任务执行
Diffusion PolicyGithub开源项目强化学习机器人控制模拟环境计算机视觉
Diffusion Policy是一种基于扩散模型的机器人控制算法,旨在高效执行复杂任务。该项目提供实验日志、预训练检查点和完整代码库,支持模拟环境和真实机器人的训练与评估。其代码结构便于添加新任务和方法,同时保持灵活性。研究人员可复现实验结果,并将算法应用于多种机器人控制场景。
flash-diffusion - 用于加速条件扩散模型的高效蒸馏技术
Flash DiffusionGithubLoRA加速技术图像生成开源项目扩散模型
Flash Diffusion是一种用于加速预训练扩散模型图像生成的蒸馏方法。该技术高效、快速、通用且兼容LoRA,在COCO数据集上实现了少步骤图像生成的先进性能。Flash Diffusion只需几小时GPU训练时间和较少可训练参数,适用于文本生成图像、图像修复、换脸和超分辨率等多种任务。它支持UNet和DiT等不同骨干网络,能够显著减少采样步骤,同时保持高质量的图像生成效果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号