Project Icon

deep-learning-colonoscopy

深度学习在结肠镜息肉检测和分类中的应用进展

本项目汇集了深度学习在结肠镜息肉检测和分类领域的前沿研究。内容涵盖息肉检测定位、分类及同步检测分类三大方向,并提供数据集信息、深度学习架构和性能指标等技术细节。这些研究成果有望提升结肠癌筛查的准确度和效率,推动相关临床应用的发展。

Deep Learning for Polyp Detection and Classification in Colonoscopy

This repository was created from the following review paper: A. Nogueira-Rodríguez; R. Domínguez-Carbajales; H. López-Fernández; Á. Iglesias; J. Cubiella; F. Fdez-Riverola; M. Reboiro-Jato; D. Glez-Peña (2020) Deep Neural Networks approaches for detecting and classifying colorectal polyps. Neurocomputing.

Please, cite it if you find it useful for your research.

AI4PolypNet

AI4PolypNet

As part of AI4PolypNet, we are involved in a challenge that will be developed at iSMIT (September 2024). In this edition we will focus only on colonoscopy images and, apart from classical polyp detection and segmentation we present an extended version of polyp classification, including the challenging serrated sessile adenoma class. All the information is available here.

About this repository

This repository collects the most relevant studies applying Deep Learning for Polyp Detection and Classification in Colonoscopy from a technical point of view, focusing on the low-level details for the implementation of the DL models. In first place, each study is categorized in three types: (i) polyp detection and localization (through bounding boxes or binary masks, i.e. segmentation), (ii) polyp classification, and (iii) simultaneous polyp detection and classification (i.e. studies based on the usage of a single model such as YOLO or SSD to performs simultaneous polyp detection and classification). Secondly, a summary of the public datasets available as well as the private datasets used in the studies is provided. The third section focuses on technical aspects such as the Deep Learning architectures, the data augmentation techniques and the libraries and frameworks used. Finally, the fourth section summarizes the performance metrics reported by each study.

Suggestions are welcome, please check the contribution guidelines before submitting a pull request.

Table of Contents:

Research

Polyp Detection and Localization

StudyDateEndoscopy typeImaging technologyLocalization typeMultiple polypReal time
Tajbakhsh et al. 2014, Tajbakhsh et al. 2015Sept. 2014 / Apr. 2015ConventionalN/ABounding boxNoYes
Zhu R. et al. 2015Oct. 2015ConventionalN/ABounding box (16x16 patches)YesNo
Park and Sargent 2016March 2016ConventionalNBI, WLBounding boxNoNo
Yu et al. 2017Jan. 2017ConventionalNBI, WLBounding boxNoNo
Zhang R. et al. 2017Jan. 2017ConventionalNBI, WLNoNoNo
Yuan and Meng 2017Feb. 2017WCEN/ANoNoNo
Brandao et al. 2018Feb. 2018Conventional/WCEN/ABinary maskYesNo
Zhang R. et al. 2018May 2018ConventionalWLBounding boxNoNo
Misawa et al. 2018June 2018ConventionalWLNoYesNo
Zheng Y. et al. 2018July 2018ConventionalNBI, WLBounding boxYesYes
Shin Y. et al. 2018July 2018ConventionalWLBounding boxYesNo
Urban et al. 2018Sep. 2018ConventionalNBI, WLBounding boxNoYes
Mohammed et al. 2018, GitHubSep. 2018ConventionalWLBinary maskYesYes
Wang et al. 2018, Wang et al. 2018Oct. 2018ConventionalN/ABinary maskYesYes
Qadir et al. 2019Apr. 2019ConventionalNBI, WLBounding boxYesNo
Blanes-Vidal et al. 2019March 2019WCEN/ABounding boxYesNo
Zhang X. et al. 2019March 2019ConventionalN/ABounding boxYesYes
Misawa et al. 2019June 2019ConventionalN/ANoYesNo
Zhu X. et al. 2019June 2019ConventionalN/ANoNoYes
Ahmad et al. 2019June 2019ConventionalWLBounding boxYesYes
Sornapudi et al. 2019June 2019Conventional/WCEN/ABinary maskYesNo
Wittenberg et al. 2019Sept. 2019ConventionalWLBinary maskYesNo
Yuan Y. et al. 2019Sept. 2019WCEN/ANoNoNo
Ma Y. et al. 2019Oct. 2019ConventionalN/ABounding boxYesNo
Tashk et al. 2019Dec. 2019ConventionalN/ABinary maskNoNo
Jia X. et al. 2020Jan. 2020ConventionalN/ABinary maskYesNo
Ma Y. et al. 2020May 2020ConventionalN/ABounding boxYesNo
Young Lee J. et al. 2020May 2020ConventionalN/ABounding boxYesYes
Wang W. et al. 2020July 2020ConventionalWLNoNoNo
Li T. et al. 2020Oct. 2020ConventionalN/ANoNoNo
Sánchez-Peralta et al. 2020Nov. 2020ConventionalNBI, WLBinary maskNoNo
Podlasek J. et al. 2020Dec. 2020ConventionalN/ABounding boxNoYes
Qadir et al. 2021Feb. 2021ConventionalWLBounding boxYesYes
Xu J. et al. 2021Feb. 2021ConventionalWLBounding boxYesYes
Misawa et al. 2021Apr. 2021ConventionalWLNoYesYes
Livovsky et al. 2021June 2021ConventionalN/ABounding boxYesYes
Pacal et al. 2021July 2021ConventionalWLBounding boxYesYes
Liu et al. 2021July 2021ConventionalN/ABounding boxYesYes
Nogueira-Rodríguez et al. 2021Aug. 2021ConventionalNBI, WLBounding boxYesYes
Yoshida et al. 2021Aug. 2021ConventionalWL, LCIBounding boxYesYes
Ma Y. et al. 2021Sep. 2021ConventionalWLBounding boxYesNo
Pacal et al. 2022Nov. 2021ConventionalWLBounding boxYesYes
Nogueira-Rodríguez et al. 2022April 2022ConventionalNBI, WLBounding boxYesYes
Nogueira-Rodríguez et al. 2023March 2023ConventionalNBI, WLBounding boxYesYes

Polyp Classification

StudyDateEndoscopy typeImaging technologyClassesReal time
Ribeiro et al. 2016Oct. 2016ConventionalWLNeoplastic vs. Non-neoplasticNo
Zhang R. et al. 2017Jan. 2017ConventionalNBI, WLAdenoma vs. hyperplastic
Resectable vs. non-resectable
Adenoma vs. hyperplastic vs. serrated
No
Byrne et al. 2017Oct. 2017ConventionalNBIAdenoma vs. hyperplasticYes
Komeda et al. 2017Dec. 2017ConventionalNBI, WL, ChromoendoscopyAdenoma vs. non-adenomaNo
Chen et al. 2018Feb. 2018ConventionalNBINeoplastic vs. hyperplasticNo
Lui et al. 2019Apr. 2019ConventionalNBI, WLEndoscopically curable lesions vs. endoscopically incurable lesionNo
Kandel et al. 2019June 2019ConventionalN/AAdenoma vs. hyperplastic vs. serrated (sessile serrated adenoma/traditional serrated adenoma)No
Zachariah et al. 2019Oct. 2019ConventionalNBI, WLAdenoma vs. serratedYes
Bour et al. 2019Dec. 2019ConventionalN/AParis classification: not dangeours (types Ip, Is, IIa, and IIb) vs. dangerous (type IIc) vs. cancer (type III)No
Patino-Barrientos et al. 2020Jan. 2020ConventionalWLKudo's classification: malignant (types I, II, III, and IV) vs. non-malignant (type V)No
Cheng Tao Pu et al. 2020Feb. 2020ConventionalNBI, BLIModified Sano's (MS) classification: MS I (Hyperplastic) vs. MS II (Low-grade tubular adenomas) vs. MS
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号