Project Icon

pyvene

用于干预PyTorch模型内部状态的开源Python库

pyvene是一个用于干预PyTorch模型内部状态的开源Python库。它支持在多个位置和任意神经元集合上进行干预,适用于模型编辑、引导、鲁棒性和可解释性等AI领域。该库兼容所有PyTorch模型,无需重新定义模型类,可轻松实现对各种架构的干预。pyvene目前处于活跃开发阶段。

Renate - 自动神经网络再训练的持续学习解决方案
GithubPyTorchRenate开源项目持续学习模型重训练神经网络
Renate是一个用于神经网络模型自动再训练的Python库,采用持续学习和终身学习算法。基于PyTorch和Lightning构建,通过Syne Tune实现超参数优化。该工具专门解决数据分布变化引起的灾难性遗忘问题,提升模型对新数据的适应能力。Renate支持云端部署,适合实际再训练场景,并提供便捷的高级超参数优化功能。
torchani - 基于PyTorch的神经网络势能模型库 实现高精度分子动力学模拟
GithubPyTorchTorchANI分子动力学开源项目机器学习神经网络
TorchANI是一个开源的PyTorch实现的ANI神经网络势能模型库。该项目提供高精度分子动力学模拟功能,支持ANI2x、ANI1x和ANI1ccx等多种模型参数。TorchANI具备易用API和GPU加速能力,可通过pip或conda安装。作为活跃维护的开源项目,TorchANI欢迎社区贡献。
vector-quantize-pytorch - Pytorch向量量化库,可应用于图像和音乐生成
DeepmindGithubJukeboxOpenAIVQ-VAE-2Vector Quantization开源项目
本向量量化库来源于Deepmind的TensorFlow实现,并转化为Pytorch库,使用指数移动平均法来更新字典。它在高质量图像(如VQ-VAE-2)和音乐(如Jukebox)生成中已取得成功,支持多种残差VQ方法、代码簿初始化和正则化,显著提升了量化效果和稳定性。
pytorch-lightning - 深度学习框架的全方位AI模型训练与部署解决方案
AI模型训练GithubLightning FabricPyTorch Lightning开源项目模型部署深度学习热门
深度学习框架Pytorch-Lightning 2.0版本现已推出,提供清晰稳定的API,支持AI模型的预训练、微调和部署。该框架轻松实现Pytorch代码组织,将科学研究与工程实现分离,帮助研究人员和工程师高效进行模型训练与部署。通过提供各种训练和部署选项以及兼容多种硬件和加速器,Pytorch-Lightning兼顾模型的灵活性和可扩展性,适应从初学者到专业AI研究的不同需求。
pytorch-toolbelt - 专为PyTorch设计的Python库,提供高效研发和Kaggle竞赛所需的工具集
GithubPyTorch乌克兰俄罗斯开源项目战争深度学习
pytorch-toolbelt是一款专为PyTorch设计的Python库,提供高效研发和Kaggle竞赛所需的工具集。其功能包括灵活的编码器-解码器架构、多种模块(如CoordConv、SCSE、Hypercolumn等)、GPU友好的测试时增强(TTA)、大图像推理及常用方法,支持多种损失函数,并与Catalyst库无缝集成。这些工具旨在简化模型构建、优化和推理过程。
bayesian-torch - 贝叶斯神经网络层和不确定性估计的PyTorch扩展库
Bayesian-TorchGithubPyTorch不确定性估计变分推断开源项目深度学习
Bayesian-Torch是PyTorch的扩展库,用于在深度学习模型中实现贝叶斯推理和不确定性估计。它提供贝叶斯层,支持将确定性神经网络转换为贝叶斯形式。库包含变分推理、MOPED、量化和AvUC损失等功能,适用于不确定性感知应用。研究人员和开发者可利用Bayesian-Torch构建更可靠、可解释的AI模型。
serve - 提高PyTorch模型服务效率和安全性的关键技术
GithubPyTorchTorchServe大规模模型安全性开源项目模型服务
TorchServe是一款高效灵活的平台,用于生产环境中PyTorch模型的部署和扩展。最新版本通过默认启用的令牌授权机制和增强的模型API控制,有效预防未授权API调用和恶意代码风险。此外,该平台还支持在不同环境(包括本地、云服务及各类硬件)中快速部署模型。
TransformerLens - 深入解析生成式语言模型的机制解释工具
GithubTransformerLens开源工具开源项目机械可解释性神经网络解析语言模型
TransformerLens是一个开源库,专门用于解释生成式语言模型的内部机制。它支持加载50多种开源语言模型,让研究人员能够访问模型的内部激活。用户可以缓存激活数据,并在模型运行时进行编辑、删除或替换。这个工具为深入理解复杂语言模型的工作原理提供了有力支持。
pytorch-frame - 模块化深度学习框架用于异构表格数据
GithubPyTorch Frame开源项目模块化框架深度学习神经网络表格数据
PyTorch Frame是一个为异构表格数据设计的深度学习框架,支持数值、分类、时间、文本和图像等多种列类型。它采用模块化架构,实现了先进的深度表格模型,并可与大型语言模型集成。该框架提供了便捷的mini-batch加载器、基准数据集和自定义数据接口,简化了表格数据的深度学习研究过程,适用于各层次研究人员。框架内置多个预实现的深度表格模型,如Trompt、FTTransformer和TabNet等,并提供与XGBoost等GBDT模型的性能对比基准。PyTorch Frame无缝集成于PyTorch生态系统,便于与其他PyTorch库协同使用,为端到端的深度学习研究提供了便利。
pytorch-forecasting - 前沿的时间序列预测工具包,提供灵活的高层API
GithubPyTorch ForecastingPyTorch Lightning开源项目时间序列预测深度学习神经网络
PyTorch Forecasting 是一个基于 PyTorch 的时间序列预测包,适用于实际应用和研究。它支持多种神经网络架构及自动日志记录,利用 PyTorch Lightning 实现多 GPU/CPU 的扩展训练,并内置模型解释功能。关键特性包括时间序列数据集类、基本模型类、增强的神经网络架构、多视角时间序列指标和超参数优化。安装简便,支持 pip 和 conda,文档详尽,并包含模型比较和使用案例。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号