Project Icon

VSGAN-tensorrt-docker

基于TensorRT的视频超分辨率和帧插值加速方案

该项目利用TensorRT加速视频超分辨率和帧插值模型,致力于提供最快的推理速度。支持Rife、RealCUGAN、GMFupSS等多种模型架构,同时提供CUDA和TensorRT版本。项目集成了自动去重、镜头边界检测等功能,并支持多GPU。通过Docker,可以方便地部署和使用这些高性能模型。

VSGAN-tensorrt-docker

Repository to use super resolution models and video frame interpolation models and also trying to speed them up with TensorRT. This repository contains the fastest inference code that you can find, at least I am trying to archive that. Not all codes can use TensorRT due to various reasons, but I try to add that if it works. Further model architectures are planned to be added later on.

Table of contents


Currently working networks:

Also used:

ModelRifeGMFupSSGMFSS_unionGMFSS_Fortuna / GMFSS_Fortuna_union
CUDAyes (4.0-4.12)yesyes (vanilla / wgan)yes (base / union)
TensorRTyes (4.0-4.22, skipped some lite models)---

Further stuff that can use TensorRT via mlrt with onnx is for example Real-ESRGAN / SRVGGNetCompact, SAFMN, DPIR, Waifu2x, real-cugan, apisr, AnimeJaNai, ModernSpanimation and AniScale. Onnx files can be found here.

Some important things:

  • If you are on Windows, install all the latest updates first, otherwise wsl won't work properly. 21H2 minimum.
  • Do not use webm video, webm is often broken. It can work, but don't complain about broken output afterwards. I would suggest to render webm into mp4 or mkv.
  • Only use ffmpeg to determine if video is variable framerate (vfr) or not. Other programs do not seem reliable.
  • Processing vfr video is dangerous, but you can try to use fpsnum and fpsden. Either use these params or render the input video into constant framerate (crf).
  • Colabs have a weak cpu, you should try x264 with --opencl. (A100 does not support NVENC and such)

Usage

Get CUDA and latest Nvidia drivers. After that, follow the following steps:

WARNING FOR WINDOWS USERS: Docker Desktop 4.17.1 is broken. I confirmed that 4.25.0 should work. Older tested versions are 4.16.3 or 4.17.0. I would recommend to use 4.25.0. 4.17.1 results in Docker not starting which is mentioned in this issue.

ANOTHER WARNING FOR PEOPLE WITHOUT AVX512: Instead of using styler00dollar/vsgan_tensorrt:latest, which I build with my 7950x and thus with all AVX, use styler00dollar/vsgan_tensorrt:latest_no_avx512 in compose.yaml to avoid Illegal instruction (core dumped) which is mentioned in this issue.

AND AS A FINAL INFO, Error opening input file pipe: IS NOT A REAL ERROR MESSAGE. That means invalid data got piped into ffmpeg and can be piped error messages for example. To see the actual error messages and what got piped, you can use vspipe -c y4m inference.py -.

Quickstart:

# if you have Windows, install Docker Desktop https://www.docker.com/products/docker-desktop/
# if you encounter issues, install one of the following versions:
# 4.16.3: https://desktop.docker.com/win/main/amd64/96739/Docker%20Desktop%20Installer.exe
# 4.17.0: https://desktop.docker.com/win/main/amd64/99724/Docker%20Desktop%20Installer.exe

# if you have Arch, install the following dependencies
yay -S docker nvidia-docker nvidia-container-toolkit docker-compose docker-buildx

# run the docker with docker-compose
# you need to be inside the vsgan folder with cli before running the following step, git clone repo and cd into it
# go into the vsgan folder, inside that folder should be compose.yaml, run this command
# you can adjust folder mounts in the yaml file
docker-compose run --rm vsgan_tensorrt

There are now multiple containers to choose from, if you don't want the default, then edit compose.yaml and set a different tag image: styler00dollar/vsgan_tensorrt:x prior to running docker-compose run --rm vsgan_tensorrt.

  • latest: Default docker with everything. Trying to keep everything updated and fixed.
  • latest_no_avx512 is for cpus without avx512 support, otherwise it just crashes if you try to run avx512 binaries on cpus without such support. Use this if your cpu does not support all instruction sets.
  • minimal: Bare minimum to run ffmpeg, mlrt and a few video readers.
docker imagecompressed downloadextracted containershort description
styler00dollar/vsgan_tensorrt:latest9gb17gbdefault latest with trt10.3
styler00dollar/vsgan_tensorrt:latest_no_avx512 (placeholder, need to build and upload later)??trt10.3 without avx512
styler00dollar/vsgan_tensorrt:trt9.38gb15gbtrt9.3 use bfdb96a with this docker
styler00dollar/vsgan_tensorrt:trt9.3_no_avx5128gb15gbtrt9.3 without avx512 use bfdb96a with this docker
styler00dollar/vsgan_tensorrt:minimal4gb8gbtrt8.6 + ffmpeg + mlrt + ffms2 + lsmash + bestsource

Piping usage:

# you can use it in various ways, ffmpeg example
vspipe -c y4m inference.py - | ffmpeg -i pipe: example.mkv -y

# example without vspipe
ffmpeg -f vapoursynth -i inference.py example.mkv -y

# example with ffmpeg trt plugin + nvenc
ffmpeg -hwaccel cuda -hwaccel_output_format cuda -i input.mp4 -vf scale_npp=1280:720,format_cuda=rgbpf32le,tensorrt=my_engine.engine,format_cuda=nv12 -c:v hevc_nvenc -preset lossless output.mkv -y
# example with ffmpeg trt plugin + hwdownload (cpu encoding)
ffmpeg -hwaccel cuda -hwaccel_output_format cuda -i input.mp4 -vf format_cuda=rgbpf32le,tensorrt=my_engine.engine,format_cuda=nv12,hwdownload,format=nv12 -vcodec ffv1 output.mkv -y

If docker does not want to start, try this before you use docker:

# fixing docker errors
sudo systemctl start docker
sudo chmod 666 /var/run/docker.sock

Linux docker autostart:

sudo systemctl enable --now docker

The following stuff is for people who want to run things from scratch. Manual ways of downloading the docker image:

# Download prebuild image from dockerhub (recommended)
docker pull styler00dollar/vsgan_tensorrt:latest

# if you have `unauthorized: authentication required` problems, download the docker with
git clone https://github.com/NotGlop/docker-drag
cd docker-drag
python docker_pull.py styler00dollar/vsgan_tensorrt:latest
docker load -i
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号