Project Icon

VSGAN-tensorrt-docker

基于TensorRT的视频超分辨率和帧插值加速方案

该项目利用TensorRT加速视频超分辨率和帧插值模型,致力于提供最快的推理速度。支持Rife、RealCUGAN、GMFupSS等多种模型架构,同时提供CUDA和TensorRT版本。项目集成了自动去重、镜头边界检测等功能,并支持多GPU。通过Docker,可以方便地部署和使用这些高性能模型。

VSGAN - VapourSynth超分辨率和图像修复模块
GithubPyTorchVSGANVapourSynth图像处理开源项目超分辨率
VSGAN是一个为VapourSynth开发的超分辨率和图像修复处理模块,基于PyTorch实现。该模块利用深度学习技术,提供视频和图像的高质量超分辨率和修复功能。VSGAN兼容Python 3.7+和VapourSynth R55+版本,在GitHub上开源并提供详细文档。这个持续更新的项目为视频处理爱好者和专业人士提供了强大的图像增强工具。
YOLOv8-TensorRT - 通过TensorRT加速YOLOv8模型,提供在CUDA环境下的快速部署和推理解决方案
CUDAGithubONNXPyTorchTensorRTYOLOv8开源项目
本项目通过TensorRT加速YOLOv8模型,提供在CUDA环境下的快速部署和高效推理解决方案。包括环境准备、模型导出、引擎构建和多种推理方法,支持Python和C++语言。特性涵盖ONNX模型导出、端到端引擎构建和模型推理,适用于图像和视频的不同输入源。支持Jetson设备,并附有详细的文档和脚本,便于操作,提升深度学习应用性能。
SRGAN - 使用生成对抗网络提升单图像超分辨率效果
GithubSRGANTensorLayerXVGG19开源项目计算机视觉超分辨率
本项目展示了使用生成对抗网络(GAN)如何实现单图像的高分辨率超分辨率。使用预训练的VGG19模型和高分辨率图像进行训练,支持多种深度学习框架,如TensorFlow、PaddlePaddle、MindSpore,未来还将支持PyTorch。项目提供完整的训练和评估指南,并通过简单的代码修改可以切换不同的后端框架。适用于图像处理和计算机视觉领域的研究人员和开发人员,项目中展示了技术实现的详细结果,还提供了参考文献和讨论资源。
TensorRT-YOLO - 为YOLO目标检测模型提供推理加速解决方案
CUDAGithubTensorRT-YOLOYOLO开源项目推理加速目标检测
此项目基于TensorRT,为YOLO目标检测模型提供推理加速解决方案,支持YOLOv3至YOLOv10及PP-YOLOE系列。集成EfficientNMS插件及CUDA技术,有效提升推理效率。支持C++和Python,包含CLI快速导出和推理功能,并提供Docker一键部署。推荐CUDA 11.6及以上版本和TensorRT 8.6及以上版本。
Fast-SRGAN - 基于Pixel Shuffle的SR-GAN实时超分辨率视频放大
Fast-SRGANGithubPython 3.10像素洗牌开源项目超分辨率预训练模型
Fast-SRGAN是一个开源项目,基于SR-GAN架构和Pixel Shuffle技术,旨在实现实时超分辨率视频放大。实验证明,在MacBook M1 Pro GPU上可以达到720p视频的30fps处理速度。项目提供预训练模型并支持自定义训练参数,用户可通过配置文件或命令行参数进行设置并在Tensorboard上监控训练进度。欢迎社区贡献意见和改进。
image-super-resolution - Keras实现的高质量图像超分辨率,支持多种网络结构和训练脚本
GANGithubImage Super-ResolutionKerasPSNRResidual Dense Networks开源项目
本项目旨在通过实现多种残差密集网络(RDN)和残差在残差密集网络(RRDN)来提升低分辨率图像的质量,并支持Keras框架。项目提供了预训练模型、训练脚本以及用于云端训练的Docker脚本。适用于图像超分辨率处理,兼容Python 3.6,开源并欢迎贡献。
TensorRT - 优化深度学习推理的开源平台
CUDADockerGithubNVIDIAONNXTensorRT开源项目
NVIDIA TensorRT 开源软件提供插件和 ONNX 解析器的源码,展示 TensorRT 平台功能的示例应用。这些组件是 TensorRT GA 版本的一部分,并包含扩展和修复。用户可以轻松安装 TensorRT Python 包或根据构建指南编译。企业用户可使用 NVIDIA AI Enterprise 套件,并可加入 TensorRT 社区获取最新产品更新和最佳实践。
iSeeBetter - 时空融合视频超分辨率方法
GithubPyTorch图像质量开源项目深度学习生成对抗网络视频超分辨率
iSeeBetter是一种新型视频超分辨率算法,结合循环生成反投影网络和SRGAN,从相邻帧中提取时空信息。采用四重损失函数优化模型,在多数场景下超越现有方法,实现更高质量的视频放大效果。该方法融合了单帧和多帧超分辨率技术,为视频画质提升提供了新的解决方案。
Upscale-A-Video - 基于扩散模型的时序一致视频超分辨率技术
AI视频处理GithubUpscale-A-VideoYouHQ数据集开源项目扩散模型视频超分辨率
Upscale-A-Video是一个视频超分辨率项目,采用扩散模型技术处理低分辨率视频和文本提示输入。该项目重点解决真实世界视频的时序一致性问题,并发布了YouHQ数据集用于模型训练和评估。Upscale-A-Video旨在提高视频分辨率的同时保持帧间连贯性。
TensorRT_Tutorial - 深度学习推理加速实践指南
GPU加速GithubINT8量化TensorRT开源项目性能优化深度学习
TensorRT_Tutorial项目是一个综合性资源库,提供NVIDIA TensorRT深度学习推理加速的实用指南。项目包含中文文档翻译、视频教程、博客文章和代码示例,覆盖TensorRT的基础使用和高级优化。内容涉及核心功能介绍、实际应用经验和优化技巧,为深度学习从业者提升模型推理性能提供了宝贵参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号