Project Icon

Restormer

高效Restormer Transformer实现高分辨率图像修复

研究提出了一种名为Restormer的高效Transformer模型,通过多头注意力和前馈网络设计,实现了长距离像素交互,适用于大图像处理。该模型在图像去雨、单图像运动去模糊、散焦去模糊(单图像和双像素数据)和高斯及真实图像去噪等任务中表现优异。Restormer的训练代码和预训练模型已发布,并被选为CVPR 2022的口头报告。用户可通过Colab或命令行测试预训练模型。

iSeeBetter - 时空融合视频超分辨率方法
GithubPyTorch图像质量开源项目深度学习生成对抗网络视频超分辨率
iSeeBetter是一种新型视频超分辨率算法,结合循环生成反投影网络和SRGAN,从相邻帧中提取时空信息。采用四重损失函数优化模型,在多数场景下超越现有方法,实现更高质量的视频放大效果。该方法融合了单帧和多帧超分辨率技术,为视频画质提升提供了新的解决方案。
stable-diffusion-xl-1.0-inpainting-0.1 - AI驱动的图像生成和局部修复模型 支持高分辨率编辑
GithubHuggingfaceSDXL人工智能修复图像生成开源项目模型绘画
stable-diffusion-xl-1.0-inpainting-0.1是基于Stable Diffusion XL的AI图像生成和修复模型。该模型支持根据文本提示生成逼真图像,并能进行局部编辑和修复。采用1024x1024分辨率训练,可实现高质量图像处理。用户通过提供原图、蒙版和文本描述,即可完成精准图像编辑。这一工具适用于艺术创作、设计和研究等领域,但仍存在一些限制,例如无法生成可读文本。
Realistic_Vision_V2.0 - AI驱动的高品质摄影级图像生成模型
AI绘图GithubHuggingfaceMage.Space关键词提示图像生成开源项目模型高质量照片
Realistic_Vision_V2.0是一个开源的AI图像生成模型,专门用于创建逼真的肖像和场景。该模型支持8K超高清输出,能够呈现精细的皮肤纹理和自然的光线效果。为优化生成结果,模型提供了专门的提示模板和负面提示建议。结合特定的VAE和推荐参数,Realistic_Vision_V2.0能够生成高度写实、专业品质的图像。
PixArt-XL-2-512x512 - 快速生成高分辨率图像的高效能模型
GithubHuggingfacePixart-α开源项目扩散模型文本到图像模型深度学习生成模型
PixArt-α是一个基于Transformer架构的文本到图像生成框架,能够从文本提示生成高分辨率图像,最高可达1024像素。相比于Stable Diffusion v1.5,其训练时间仅为10.8%,大幅降低成本与碳排放。用户偏好评估显示,PixArt-α在实现效率与图像质量方面表现卓越,适用于艺术创作、教育用途及生成模型研究。但需要注意的是,其在图像还原现实性和复杂任务的执行上尚有局限。查看其GitHub或arXiv以了解更多细节。
SRGAN-PyTorch - 基于GAN的单图像超分辨率实现
GithubPyTorchSRGAN图像处理开源项目生成对抗网络超分辨率
SRGAN-PyTorch是一个开源项目,实现了基于生成对抗网络的单图像超分辨率算法。该项目能够将图像放大4倍,同时保持高质量和细节。它提供了完整的训练和测试流程,包括预训练模型、数据集处理脚本和性能评估。研究者和开发者可以利用此项目复现原论文结果或在自定义数据上应用SRGAN技术。
TransMorph_Transformer_for_Medical_Image_Registration - 基于Transformer的无监督医学图像配准方法
GithubPyTorchTransMorphTransformer医学影像配准开源项目深度学习
TransMorph是一个利用Transformer架构进行无监督医学图像配准的开源项目,结合了Vision Transformer和Swin Transformer技术。提供多个模型变体和多种损失函数,支持单模态和多模态配准,公开了训练脚本和预训练模型,并在MICCAI 2021 L2R挑战中表现出色。
controlnet-tile-sdxl-1.0 - ControlNet技术在图像处理中的最新应用探索
ControlNet Tile SDXLGithubHuggingface人工智能图像去模糊图像超分辨率开源项目模型生成式图像处理
该项目展示了如何利用ControlNet技术实现图像的去模糊、变体生成和超分辨率处理。通过整合多种图像处理器和pipelines,支持多种比率和倍数的放大,简化了操作过程,并提高了图像质量。项目代码提供了应用高斯模糊、引导滤波及多维采样的示例,可以通过详细提示生成更高质量和多样化的图像,提高细节再现能力。
x-transformers - 轻量级Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种从图像分类到语言模型的应用
Githubtransformerx-transformers开源项目模型训练编码器编解码器
x-transformers提供了多功能的Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种应用,从图像分类到语言模型。其先进技术如闪存注意力和持久内存,有助于提高模型的效率和性能。此项目是研究人员和开发者的理想选择,用于探索和优化机器学习任务中的Transformer技术。
MDT - MDTv2图像合成模型:更快收敛和卓越性能
GithubMasked Diffusion Transformer人工智能图像合成开源项目深度学习计算机视觉
MDTv2是一种先进的深度学习图像合成模型,在ImageNet数据集上实现了1.58的FID分数,创造新的业界标准。该模型采用掩码潜在建模技术,提高了图像语义理解能力,学习速度比先前模型快10倍以上。MDTv2在图像生成质量和训练效率方面都有显著提升,为计算机视觉和人工智能领域带来了新的可能性。
DiffBIR - 基于扩散模型的多任务盲图像修复方法
DiffBIRGithub人脸修复图像修复开源项目扩散模型盲图像超分辨率
DiffBIR是一种基于扩散模型的盲图像修复方法,可处理多种图像退化问题,如盲超分辨率、盲人脸修复和盲图像去噪。该方法采用两阶段架构,先进行退化移除,再利用IRControlNet重建图像。DiffBIR在真实世界图像上展现出优异的修复效果,能生成高质量、真实的细节。项目提供开源代码、预训练模型和详细使用说明。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号