Project Icon

fastapi-boilerplate

FastAPI项目模板 集成多种实用功能提升开发效率

fastapi-boilerplate是一个FastAPI项目模板,集成了异步SQLAlchemy会话、自定义用户类、权限依赖、Celery任务队列和Docker容器化等功能。模板还包含事件调度器和缓存系统,针对异步上下文进行了优化,并支持多数据库。这些特性有助于开发者构建高性能的FastAPI应用。

FastAPI Boilerplate

Features

  • Async SQLAlchemy session
  • Custom user class
  • Dependencies for specific permissions
  • Celery
  • Dockerize(Hot reload)
  • Event dispatcher
  • Cache

Run

Launch docker

> docker-compose -f docker/docker-compose.yml up

Install dependency

> poetry shell
> poetry install

Apply alembic revision

> alembic upgrade head

Run server

> python3 main.py --env local|dev|prod --debug

Run test codes

> make test

Make coverage report

> make cov

Formatting

> pre-commit

SQLAlchemy for asyncio context

from core.db import Transactional, session


@Transactional()
async def create_user(self):
    session.add(User(email="padocon@naver.com"))

Do not use explicit commit(). Transactional class automatically do.

Query with asyncio.gather()

When executing queries concurrently through asyncio.gather(), you must use the session_factory context manager rather than the globally used session.

from core.db import session_factory


async def get_by_id(self, *, user_id) -> User:
    stmt = select(User)
    async with session_factory() as read_session:
        return await read_session.execute(query).scalars().first()


async def main() -> None:
    user_1, user_2 = await asyncio.gather(
        get_by_id(user_id=1),
        get_by_id(user_id=2),
    )

If you do not use a database connection like session.add(), it is recommended to use a globally provided session.

Multiple databases

Go to core/config.py and edit WRITER_DB_URL and READER_DB_URL in the config class.

If you need additional logic to use the database, refer to the get_bind() method of RoutingClass.

Custom user for authentication

from fastapi import Request


@home_router.get("/")
def home(request: Request):
    return request.user.id

Note. you have to pass jwt token via header like Authorization: Bearer 1234

Custom user class automatically decodes header token and store user information into request.user

If you want to modify custom user class, you have to update below files.

  1. core/fastapi/schemas/current_user.py
  2. core/fastapi/middlewares/authentication.py

CurrentUser

class CurrentUser(BaseModel):
    id: int = Field(None, description="ID")

Simply add more fields based on your needs.

AuthBackend

current_user = CurrentUser()

After line 18, assign values that you added on CurrentUser.

Top-level dependency

Note. Available from version 0.62 or higher.

Set a callable function when initialize FastAPI() app through dependencies argument.

Refer Logging class inside of core/fastapi/dependencies/logging.py

Dependencies for specific permissions

Permissions IsAdmin, IsAuthenticated, AllowAll have already been implemented.

from core.fastapi.dependencies import (
    PermissionDependency,
    IsAdmin,
)


user_router = APIRouter()


@user_router.get(
    "",
    response_model=List[GetUserListResponseSchema],
    response_model_exclude={"id"},
    responses={"400": {"model": ExceptionResponseSchema}},
    dependencies=[Depends(PermissionDependency([IsAdmin]))],  # HERE
)
async def get_user_list(
    limit: int = Query(10, description="Limit"),
    prev: int = Query(None, description="Prev ID"),
):
    pass

Insert permission through dependencies argument.

If you want to make your own permission, inherit BasePermission and implement has_permission() function.

Note. In order to use swagger's authorize function, you must put PermissionDependency as an argument of dependencies.

Event dispatcher

Refer the README of https://github.com/teamhide/fastapi-event

Cache

Caching by prefix

from core.helpers.cache import Cache


@Cache.cached(prefix="get_user", ttl=60)
async def get_user():
    ...

Caching by tag

from core.helpers.cache import Cache, CacheTag


@Cache.cached(tag=CacheTag.GET_USER_LIST, ttl=60)
async def get_user():
    ...

Use the Cache decorator to cache the return value of a function.

Depending on the argument of the function, caching is stored with a different value through internal processing.

Custom Key builder

from core.helpers.cache.base import BaseKeyMaker


class CustomKeyMaker(BaseKeyMaker):
    async def make(self, function: Callable, prefix: str) -> str:
        ...

If you want to create a custom key, inherit the BaseKeyMaker class and implement the make() method.

Custom Backend

from core.helpers.cache.base import BaseBackend


class RedisBackend(BaseBackend):
    async def get(self, key: str) -> Any:
        ...

    async def set(self, response: Any, key: str, ttl: int = 60) -> None:
        ...

    async def delete_startswith(self, value: str) -> None:
        ...

If you want to create a custom key, inherit the BaseBackend class and implement the get(), set(), delete_startswith() method.

Pass your custom backend or keymaker as an argument to init. (/app/server.py)

def init_cache() -> None:
    Cache.init(backend=RedisBackend(), key_maker=CustomKeyMaker())

Remove all cache by prefix/tag

from core.helpers.cache import Cache, CacheTag


await Cache.remove_by_prefix(prefix="get_user_list")
await Cache.remove_by_tag(tag=CacheTag.GET_USER_LIST)
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号