Project Icon

distilbert-base-uncased-ag-news

使用精简版模型增强新闻文本分类性能

该项目通过使用TextAttack工具和ag_news数据集对distilbert-base-uncased模型进行微调,提升了文本分类的精确度。模型经过5个周期的训练,采用了32的批量大小、2e-05的学习率和128的最大序列长度。在分类任务中采用了交叉熵损失函数。模型在验证集测试中取得了0.9479的最佳准确度。详见TextAttack的GitHub页面。

politicalBiasBERT - BERT微调模型实现政治倾向文本自动分类
BERTGithubHuggingface开源项目政治偏见文本分类机器学习模型自然语言处理
politicalBiasBERT是一个基于BERT模型微调的政治倾向分析工具。该模型通过大量政治文本训练,能够自动将输入文本分类为左派、中立或右派。研究人员和开发者可使用简单的Python代码调用此模型,快速分析文本的政治倾向。这一工具为政治文本分析和舆情研究提供了有力支持。
vit-base-uppercase-english-characters - 大写英文字符高精度图像分类模型
GithubHuggingfaceadam优化vit-base-uppercase-english-characters准确率图像分类开源项目模型模型微调
该模型基于vit-base-patch16-224-in21k进行了微调,并在pittawat/uppercase-english-characters数据集上达到了0.9573的准确率。训练过程中采用了学习率为0.0002的Adam优化器,损失率为0.3160。使用Transformers 4.26.1和Pytorch 1.13.0等框架版本,显著提升了在图像分类领域的性能。
bert-base-uncased-sst2-unstructured80-int8-ov - BERT模型的非结构化剪枝与量化优化技术
BERTGLUE SST2GithubHuggingfaceOpenVINO开源项目模型蒸馏量化
该项目通过非结构化幅度剪枝、量化和蒸馏,在GLUE SST2数据集上优化了BERT模型。模型在Torch和OpenVINO IR模式下准确率达到0.9128,并在Transformer层中实现了80%的稀疏性。此项目适用于OpenVINO 2024.3.0及以上版本及Optimum Intel 1.19.0及更高版本,利用NNCF完成优化,同时提供详细的参数与训练步骤,以实现高效的文本分类。
SecureBERT - 网络安全专用的语言模型,提升文本分析和信息处理能力
GithubHuggingfaceSecureBERT开源项目文本分类模型网络安全语言模型问答
SecureBERT基于RoBERTa构建,是专用于处理网络安全文本的领域特定语言模型。经过海量的网络安全文本训练,它表现出在文本分类、命名实体识别等任务中的卓越性能,并在填空预测上优于模型如RoBERTa和SciBERT,保持对通用英语的良好理解。SecureBERT已在Huggingface平台上线,可作为下游任务的基础模型,以实现更精准的文本分析和处理。
squeezebert-uncased - SqueezeBERT:提高NLP任务效率的高效开源模型
GithubHuggingfaceSqueezeBERT开源项目微调模型组卷积语言模型预训练
SqueezeBERT是一个专注于提高自然语言处理任务效率的无大小写敏感的预训练模型。其架构通过分组卷积替换点对点全连接层,使其在Google Pixel 3设备上运行速度比bert-base-uncased快4.3倍。利用Mask Language Model和Sentence Order Prediction对模型进行了预训练,所使用的数据集包括BookCorpus和English Wikipedia。尽管模型尚未微调,但SqueezeBERT为文本分类任务奠定了坚实基础,建议使用squeezebert-mnli-headless作为起点。
fast-bert - 快速训练和部署BERT与XLNet文本分类模型的深度学习库
Fast-BertGithub开源项目文本分类深度学习自然语言处理预训练模型
fast-bert是一个深度学习库,用于训练和部署基于BERT和XLNet的文本分类模型。它支持多类和多标签分类,提供数据处理、模型训练、参数调优和部署功能。该库集成了LAMB优化器和学习率查找器,旨在简化最新自然语言处理技术的应用过程。fast-bert适用于各类文本分类任务,能够帮助开发者快速构建高性能模型。
classifier-multi-label - 基于BERT的多标签文本分类算法实现
BERTGithubSeq2SeqTextCNNtf.nn.softmax_cross_entropy_with_logits多标签分类开源项目
本项目介绍了如何使用BERT结合TextCNN、Denses、Seq2Seq等多种算法实现多标签文本分类。涵盖了模型结构、损失函数和解码方法等细节,展示了不同方法在推理速度和分类效果上的表现,提供了实验数据和结论,帮助开发者选择最佳解决方案。
textaugment - 短文本分类的全球增强方法
GithubPython库TextAugment增强开源项目文本分类自然语言处理
TextAugment是一个Python 3库,旨在提升自然语言处理应用中的文本处理能力。借助于NLTK、Gensim和TextBlob等工具,TextAugment能生成合成数据,从而提升模型性能。这个库支持多种增强方法,如Word2vec、WordNet和RTT,并可轻松集成到PyTorch、TensorFlow和Scikit-learn等机器学习框架中。无论是词义替换还是混合增强方法,TextAugment都能为短文本分类任务提供有效的解决方案。
BertWithPretrained - 基于PyTorch实现的BERT模型及相关下游任务
BERTGithubPyTorchTransformer中文文本分类开源项目英文文本分类
该项目基于PyTorch实现了BERT模型及其相关下游任务,详细解释了BERT模型和每个任务的原理。项目支持分类、翻译、成对句子分类、多项选择、问答和命名实体识别等任务,涵盖中文和英语的自然语言处理。此外,项目还含有丰富的数据集和预训练模型配置文件。
transformers-tutorials - Transformers模型在自然语言处理中的应用教程
BERTGithubHugging FaceNLPPyTorchTransformers开源项目
本项目提供了关于如何使用Transformers模型在自然语言处理任务中进行精细调优的详细教程,包括文本分类、情感分析、命名实体识别和摘要生成等案例。教程旨在帮助用户掌握应用最新NLP技术的技巧,并提供配套的Python代码示例和工具指南。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号