Project Icon

darkflow

实时物体检测与分类工具,支持多种YOLO模型

Darkflow是一个用于实时物体检测和分类的开源项目,兼容Python3、Tensorflow、Numpy和OpenCV。用户可以通过pip安装、构建Cython扩展或使用自定义标签进行训练和推理。项目还提供Android演示和支持保存加载protobuf文件,适合跨平台应用。

YOLOv6 - 高性能目标检测框架支持多场景应用
GithubYOLOv6开源项目模型训练深度学习目标检测计算机视觉
YOLOv6是一款高效的目标检测框架,提供从轻量级到大型的多种模型选择。它在速度和精度上取得平衡,支持量化和移动端部署,适用于各种实时检测场景。最新版本还引入了分割功能,扩展了应用范围。YOLOv6不仅适用于工业领域,还可广泛应用于安防、交通等多个领域。
yoloair2 - 多模型集成的YOLO目标检测工具库
GithubPyTorchYOLOAir2YOLO系列开源项目模型改进目标检测
YOLOAir2是一个基于PyTorch的YOLO系列算法工具库,集成了YOLOv7、YOLOv5等多种YOLO变体。它统一了模型代码框架和应用方式,支持用户自由组合backbone、neck和head模块,以构建定制化的目标检测网络。除目标检测外,该项目还整合了实例分割、图像分类等相关任务,为计算机视觉研究提供了便利的实验平台。
yolov3 - 开源视觉AI技术
GithubUltralyticsYOLOv3人工智能图像识别开源项目目标检测
YOLOv3是Ultralytics公司开发的开源视觉AI技术,汇集了广泛的研究和丰富经验。平台包含详尽的文档和教程,支持社区讨论,简化学习和实施过程。此技术因其出色性能和易用性,在全球范围内被广泛采用,帮助用户迅速部署并有效训练模型。
yolov10m - 高效的实时目标检测系统
COCO数据集GithubHuggingfacePyTorchYOLOv10开源项目模型目标检测计算机视觉
YOLOv10m是一个开源的目标检测项目,利用PyTorch模型和COCO数据集实现高效的计算机视觉解决方案。用户可以方便地进行训练、验证,并将模型上传至库,非常适合多种技术水平的使用者进行实时目标检测应用。
yolov9 - 高效准确的目标检测算法
GithubYOLOv9开源项目深度学习目标检测神经网络计算机视觉
YOLOv9是一种新型目标检测算法,采用可编程梯度信息技术提高学习能力。该开源项目提供YOLOv9的官方实现,包含预训练模型、训练评估脚本和使用文档。在COCO数据集上,YOLOv9展现出优异的检测性能,同时保持较低的模型复杂度。研究人员和开发者可利用这一工具进行高效准确的目标检测任务。
yolor - 改进的多任务统一网络实时对象检测模型
GithubYOLORYOLOv4多任务学习对象检测开源项目深度学习
该项目实现了一个新型多任务统一网络,基于最新论文支持多任务并在COCO数据集中的实时对象检测上表现出色。优化后的YOLOR模型在测试和验证中均显示出较高的AP值和运行速度,适用于多种实时应用场景。项目提供了详细的安装、训练和测试指南,支持Docker和Colab环境,适合研究人员和开发者在复杂场景中进行高效的对象检测。
LeYOLO - 可扩展高效的目标检测CNN架构
COCO数据集GithubLeYOLO开源项目目标检测神经网络计算效率
LeYOLO是一种新型目标检测模型系列,通过创新的CNN架构设计实现了计算效率与准确性的优化平衡。该模型引入高效主干网络缩放、快速金字塔架构网络和解耦网络中的网络检测头,大幅降低计算负载。在COCO验证集上,LeYOLO-Small仅使用4.5 GFLOP就达到38.2%的mAP,比YOLOv9-Tiny减少42%计算量。LeYOLO系列具有强大可扩展性,适用于从超低计算需求(<1 GFLOP)到高效高性能(>4 GFLOPs)的多种场景。
yoloair - YOLOAir2024版:综合模型改进教程与源码库
GithubPyTorchUltralyticsProYOLOAirYOLOv5YOLOv8开源项目
YOLOAir2024版发布,提供多模型支持及改进教程,包括YOLOv5、YOLOv7、YOLOv8等。通过统一框架和模块化实现模型多样化应用,如目标检测、实例分割、图像分类等,适用于科研与实际应用。免费提供源代码。
awesome-object-detection - 提供涵盖R-CNN至YOLOv3等系统目标检测资源
Fast R-CNNFaster R-CNNGithubMask R-CNNR-CNNYOLO开源项目
awesome-object-detection为研究者和开发者提供涵盖R-CNN至YOLOv3等系统目标检测资源,适用于学术研究与实际应用。
edgeyolo - 优化边缘设备性能的模型,支持ONNX和TensorRT导出
COCO2017EdgeYOLOGithubHuawei AscendNvidia Jetson AGX XavierTensorRT开源项目
EdgeYOLO为边缘设备优化,在Nvidia Jetson AGX Xavier上达34FPS,并通过RH loss提升小型和中型物体检测。支持COCO2017和VisDrone2019数据集,提供多种模型格式和部署代码,包括RKNN、MNN和TensorRT。项目定期更新,并集成了SAMLabeler Pro工具,支持多人远程标注。可快速上手和训练,适配不同设备和应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号