Project Icon

doctr-crnn-vgg16-bn-fascan-v1

VGG16-CRNN文字识别模型

doctr-crnn-vgg16-bn-fascan-v1是一个基于CRNN架构的文字识别模型,采用VGG16作为特征提取网络。模型通过DocumentFile接口支持图像处理,结合灵活的检测架构选择机制,可实现文档OCR任务。该实现同时支持TensorFlow 2和PyTorch框架,便于开发者快速部署和使用。

deep-learning-v2-pytorch - 深度学习教程与项目实战指南
Deep LearningGithubPyTorch卷积神经网络开源项目生成对抗网络神经网络
本仓库提供 Udacity 深度学习 v7 纳米学位课程的相关资料,包括各种深度学习主题的教程笔记本,涉及卷积神经网络、循环神经网络和生成对抗网络等模型的实现。内容涵盖权重初始化、批量归一化等技术,用户还可以访问项目起始代码,并学习在 AWS SageMaker 上部署模型。
efficientnetv2_rw_m.agc_in1k - EfficientNetV2模型:图像分类与多功能特征提取
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型模型使用
EfficientNetV2是一个在timm库中实现的高效图像分类模型。通过使用以ResNet Strikes Back为基础的训练策略和SGD优化器(带Nesterov动量),结合自适应梯度剪裁,模型在ImageNet-1k数据集上进行训练。这一架构轻量且强大,支持包括图像分类、特征提取和图像嵌入的多种图像处理任务。
MobileCLIP-S2-OpenCLIP - 高效图像-文本模型通过多模态强化训练实现性能突破
GithubHuggingfaceMobileCLIPOpenCLIP图像文本模型多模态强化训练开源项目模型零样本图像分类
MobileCLIP-S2-OpenCLIP是一款基于多模态强化训练的高效图像-文本模型。相比SigLIP的ViT-B/16模型,它在性能上有所超越,同时速度提升2.3倍,模型体积缩小2.1倍,且仅使用了1/3的训练样本。在ImageNet零样本分类任务中,该模型达到74.4%的Top-1准确率,在38个数据集上的平均性能为63.7%,体现了出色的效率与性能平衡。
dict-guided - 词典指导场景文字识别方法及VinText数据集
GithubVinText数据集场景文字识别字典引导开源项目深度学习计算机视觉
dict-guided项目提出了一种词典指导的场景文字识别方法,旨在改进现有模型性能。项目同时发布了越南语场景文字识别数据集VinText。该方法结合传统和创新策略,提高了文字识别准确率。项目开源了代码、预训练模型,并提供了数据集构建、模型架构和实验结果等详细信息,便于研究人员进行深入研究。
tesseract - 开源OCR引擎 多语言文字识别解决方案
GithubTesseract OCR光学字符识别图像处理多语言支持开源软件开源项目
Tesseract是一款开源的光学字符识别(OCR)引擎,支持超过100种语言识别和多种图像格式处理。项目包含OCR引擎libtesseract和命令行工具tesseract。最新版本Tesseract 4引入基于神经网络的OCR引擎,专注于行识别,同时保留了传统的字符模式识别功能。Tesseract支持Unicode,可输出多种格式如纯文本、PDF等,并可通过训练扩展语言识别能力。
convnextv2_base.fcmae_ft_in22k_in1k - 多功能图像分类与特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNettimm图像分类开源项目模型预训练模型
ConvNeXt-V2是一款先进的图像分类模型,通过全卷积掩码自编码器框架(FCMAE)预训练,并在ImageNet-22k和ImageNet-1k数据集上微调。除图像分类外,该模型还可用于特征图提取和图像嵌入。拥有8870万参数,ConvNeXt-V2在ImageNet-1k验证集上实现86.74%的Top-1准确率。凭借在多项基准测试中的卓越表现,ConvNeXt-V2成为各类计算机视觉任务的优秀选择。
image-text-localization-recognition - 场景文本检测与识别研究进展资源汇总
Github人工智能场景文本检测开源项目文本识别深度学习计算机视觉
该项目汇总了场景文本检测与识别领域的最新研究成果,包含牛津大学、深圳先进技术研究院、华南理工大学等机构发表的论文和开源代码。内容覆盖文本检测、文本识别、端到端文本识别等方向,为相关研究提供全面参考。项目保持更新,持续跟踪领域进展,是场景文本分析研究的重要资源库。
vgg19_bn.tv_in1k - VGG19架构的ImageNet预训练图像分类模型
GithubHuggingfaceImageNet-1kVGGtimm图像分类开源项目模型特征提取
vgg19_bn.tv_in1k是一个在ImageNet-1k数据集上预训练的VGG19模型,拥有1.437亿参数。该模型适用于图像分类、特征提取和嵌入生成等多种计算机视觉任务。通过timm库,用户可以方便地加载和使用这个模型,实现高精度的图像识别功能。模型在保持较高计算效率的同时,还提供了多种使用方式,如图像分类、特征图提取和图像嵌入等。
h2ovl-mississippi-800m - 紧凑型视觉语言模型,提供出色的文本识别功能
GithubH2OVL-Mississippi-800MHuggingfaceJSON提取OCR性能开源项目文本识别模型视觉语言模型
H2OVL-Mississippi-800M是H2O.ai推出的一款紧凑型视觉语言模型,拥有0.8亿参数,专注于OCR文本识别,表现出色。该模型在OCRBench测试中领先,超越更大规模的模型。基于H2O-Danube的架构,Mississippi-800M扩展了视觉和文本整合能力。通过1900万图文对进行训练,尤其注重OCR、文档理解以及表格和图表的解析,优化紫为OCR任务。
layoutlmv2-large-uncased - 提升多模态文档处理能力的先进预训练模型
GithubHuggingfaceLayoutLMv2图像理解多模态开源项目文档AI模型预训练
LayoutLMv2通过整合文本、布局和图像的新预训练任务,增强文档理解能力,广泛应用于FUNSD、CORD等视觉丰富文档项目,提高性能,适合多种下游任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号