Project Icon

beit_base_patch16_384.in22k_ft_in22k_in1k

高效的BEiT自监督图像分类与嵌入模型

BEiT图像分类模型在ImageNet-22k上通过DALL-E dVAE自监督掩码图像建模进行训练,并在ImageNet-22k和ImageNet-1k上进行微调。特点包括易于实现图像分类和生成图像嵌入,具有86.7百万参数,支持384x384图像。模型适合通过timm库高效调用,适用于多种计算机视觉应用。

vit_large_patch16_384.augreg_in21k_ft_in1k - 使用ImageNet数据集进行图像分类的Vision Transformer模型
GithubHuggingfaceVision Transformer图像分类开源项目模型模型比较特征提取预训练模型
该Vision Transformer模型专用于图像分类,最初在ImageNet-21k上进行扩展和正则化训练,并在ImageNet-1k上进行微调。由原作者使用JAX开发,后移植至PyTorch框架。模型的显著特点包括支持384x384图像尺寸,参数量达到304.7M,提升图像识别的准确性。该模型简化了图像分类和图像嵌入生成的过程。高效的数据增强和正则化策略进一步提升了模型性能,是计算机视觉研究与应用的有效工具。
vit_base_patch16_224.dino - 自监督训练的ViT模型实现高效图像特征提取
DINOGithubHuggingfaceVision Transformer图像分类开源项目模型特征提取自监督学习
vit_base_patch16_224.dino是一个基于Vision Transformer架构的图像特征提取模型。该模型采用自监督DINO方法在ImageNet-1k数据集上预训练,可用于图像分类和特征提取。模型包含8580万参数,支持224x224像素的输入图像。通过timm库,研究人员可以便捷地将其应用于多种计算机视觉任务,深入探索自监督学习在视觉领域的潜力。
vit_base_r50_s16_384.orig_in21k_ft_in1k - ResNet-Vision Transformer混合模型用于高精度图像分类
GithubHuggingfaceImageNetResNetVision Transformertimm图像分类开源项目模型
本模型结合ResNet与Vision Transformer优势,在大规模ImageNet-21k数据集上预训练,并在ImageNet-1k上微调,实现高效准确的图像分类。具备9900万参数,支持384x384像素输入,可用于分类任务和特征提取。研究人员可通过timm库轻松应用此模型,进行推理或深入研究。
vit_tiny_patch16_224.augreg_in21k_ft_in1k - 基于ViT架构的轻量级图像分类与特征提取模型
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型特征提取
vit_tiny_patch16_224.augreg_in21k_ft_in1k是一个轻量级Vision Transformer模型,专为图像分类和特征提取而设计。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了增强的数据增强和正则化技术。它拥有570万参数,能处理224x224尺寸的图像,在保持高效性能的同时提供准确的视觉分析能力。
tf_efficientnetv2_s.in21k_ft_in1k - EfficientNet-v2图像分类模型 基于双重ImageNet数据集训练
EfficientNet-v2GithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
这是一个基于EfficientNet-v2架构的图像分类模型,采用ImageNet-21k预训练和ImageNet-1k微调策略。模型参数量为2150万,计算量为5.4 GMACs,支持图像分类、特征提取和图像嵌入等多种应用。训练采用300x300分辨率,测试时提升至384x384,在性能和效率之间实现良好平衡。该模型最初由论文作者在Tensorflow中实现,后由Ross Wightman移植至PyTorch框架。
vit_base_patch16_224.mae - 采用MAE预训练的Vision Transformer图像特征模型
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型特征提取自监督学习
vit_base_patch16_224.mae是一个基于Vision Transformer架构的图像特征模型,通过自监督掩码自编码器(MAE)方法在ImageNet-1k数据集上预训练。该模型适用于图像分类和特征提取,拥有8580万参数,处理224x224像素的输入图像。它提供简洁的API,便于获取分类结果和提取图像嵌入。这个模型融合了ViT的出色表征能力和MAE的自监督学习优势,为多种计算机视觉任务提供了有力的预训练基础。
vit_tiny_patch16_384.augreg_in21k_ft_in1k - ViT-Tiny 轻量级视觉转换器模型实现图像分类与特征提取
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型深度学习
ViT-Tiny是一款轻量级视觉转换器模型,专为图像分类和特征提取而设计。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了先进的数据增强和正则化技术。模型仅有5.8M参数,能处理384x384尺寸的图像,通过timm库可轻松加载用于推理或进一步微调。ViT-Tiny在保持高性能的同时,大幅降低了计算资源需求,适合各类图像识别应用场景。
vit-base-patch16-224-in21k - 基于ImageNet-21k预训练的视觉Transformer模型
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型深度学习预训练模型
这是一个基于Transformer架构的视觉模型,在包含1400万图像和21843个类别的ImageNet-21k数据集上预训练。模型将图像转换为16x16像素的固定大小patch序列,通过自注意力机制处理。它可用于图像分类等多种视觉任务,提供强大的特征提取能力。模型支持PyTorch和JAX/Flax框架,适用于需要高性能视觉理解的应用场景。
vit_small_r26_s32_384.augreg_in21k_ft_in1k - ResNet与Vision Transformer结合的图像分类模型解析
GithubHuggingfaceImageNetViTtimm图像分类增广正则化开源项目模型
该模型结合ResNet与Vision Transformer(ViT)的特点,专用于图像分类。最初在ImageNet-21k上训练,后在ImageNet-1k上微调,并在JAX中创建,由Ross Wightman移植到PyTorch环境中。模型采用了36.5M参数和27.7M激活,针对384x384图像进行了优化,通过增强和正则化技术提升了处理复杂图像任务的能力,适用于多种图像识别应用。
vit-large-patch16-224 - 大型视觉Transformer模型在ImageNet数据集上的图像分类实现
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer大型模型在ImageNet-21k数据集上完成预训练,包含1400万张图像和21,843个分类。模型通过将图像分割为16x16像素块进行处理,支持224x224分辨率输入,并在ImageNet 2012数据集上进行微调。该模型基于PyTorch框架实现,可用于图像分类等视觉任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号