Project Icon

beitv2_base_patch16_224.in1k_ft_in22k

BEiT-v2架构的ImageNet-22k微调图像分类与特征提取模型

beitv2_base_patch16_224.in1k_ft_in22k是基于BEiT-v2架构的图像分类模型,在ImageNet-1k上进行自监督预训练,并在ImageNet-22k上微调。该模型拥有1.026亿参数,支持224x224像素输入,适用于图像分类和特征提取。通过timm库可轻松加载,为计算机视觉研究和应用提供强大工具。

convnextv2-base-22k-384 - 基于ImageNet-22K数据集的ConvNeXt V2全卷积模型
ConvNeXt V2GithubHuggingfaceImageNet图像分类开源项目模型自动编码器视觉
ConvNeXt V2模型通过FCMAE框架和新引入的GRN层提高卷积网络在图像分类中的效果,基于ImageNet-22K数据集训练,支持高分辨率和出色性能表现,适用于多种识别任务,可用于直接应用或微调以满足特定需求。
tf_efficientnetv2_m.in21k_ft_in1k - EfficientNetV2的图片识别与特征提取
EfficientNet-v2GithubHuggingface图像分类图像嵌入开源项目模型深度学习特征提取
EfficientNetV2模型在ImageNet-21k数据集上预训练,并在ImageNet-1k上微调,最初使用TensorFlow构建,由Ross Wightman移植至PyTorch。其参数量为54.1M,能够在不同分辨率下实现精确的图像识别,并支持通过timm库执行图像分类、特征提取和嵌入生成等多任务。
convnextv2_base.fcmae_ft_in22k_in1k_384 - 高效图像识别与特征开发的开源解决方案
ConvNeXt-V2GithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型特征提取
ConvNeXt-V2是一款基于全卷积掩码自编码器(FCMAE)预训练的图像分类模型,能够高效处理ImageNet-22k和ImageNet-1k数据集。模型拥有88.7M的参数和45.21 GMACs,适合精准的图像识别和特征开发。兼容timm库,支持图像分类、特征图提取和图像嵌入生成等应用场景。通过简单的Python代码即可调用该模型,提升开发效率。
dla102.in1k - 深层聚合架构的图像分类模型 支持多种计算机视觉应用
GithubHuggingfaceImageNettimm图像分类开源项目模型深度层聚合特征提取
dla102.in1k是基于深层聚合架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有3330万参数,支持224x224像素输入。除图像分类外,还可用于特征图提取和图像嵌入。通过timm库可方便地调用此预训练模型,为计算机视觉应用提供灵活基础。模型在图像分类、特征提取等任务中表现出色,适用于多种视觉分析场景。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
ml-fastvit - 高效混合视觉Transformer模型用于图像分类
FastViTGithub图像分类开源项目模型性能结构重参数化视觉Transformer
FastViT是一种采用结构重参数化技术的混合视觉Transformer模型。该模型在ImageNet-1K数据集上实现了准确率和延迟的良好平衡,提供多个变体以适应不同应用场景。FastViT在iPhone 12 Pro上的基准测试显示出优秀的移动端性能。项目开源了预训练模型、训练评估代码和使用文档。
tensorflow-image-models - 将PyTorch图像模型移植到TensorFlow的预训练模型库
GithubTensorFlow图像模型开源项目机器学习深度学习预训练权重
tensorflow-image-models是一个将PyTorch图像模型移植到TensorFlow的开源项目。它提供了多种预训练模型,包括ViT、DeiT、ResNet等,可用于图像分类和分割。该项目为开发者提供了简单的API来创建、预处理和保存/加载模型,并支持调整类别数量以适应不同任务。通过这个模型库,研究人员和开发者可以更方便地在TensorFlow中使用先进的图像模型。
efficientvit - EfficientViT多尺度线性注意力用于高分辨率密集预测
EfficientViTGithub图像分割开源项目模型优化深度学习计算机视觉
EfficientViT是一种新型ViT模型,专注于高效处理高分辨率密集预测视觉任务。其核心是轻量级多尺度线性注意力模块,通过硬件友好操作实现全局感受野和多尺度学习。该项目提供图像分类、语义分割和SAM等应用的预训练模型,在性能和效率间达到平衡,适合GPU部署和TensorRT优化。
LITv2 - 基于HiLo注意力的快速视觉Transformer
GithubHiLo注意力LITv2图像分类开源项目目标检测视觉Transformer
LITv2是一种基于HiLo注意力机制的高效视觉Transformer模型。它将注意力头分为两组,分别处理高频局部细节和低频全局结构,从而在多种模型规模下实现了优于现有方法的性能和更快的速度。该项目开源了图像分类、目标检测和语义分割任务的预训练模型和代码实现。
inceptionnext - 结合Inception和ConvNeXt优势的高效图像识别模型
ConvNeXtGithubInceptionNeXt卷积神经网络图像分类开源项目深度学习
InceptionNeXt是一种创新的图像识别模型,融合了Inception的设计理念和ConvNeXt的架构。通过分解大型深度卷积核,该模型在速度和准确率方面取得了平衡,达到了ResNet-50的速度和ConvNeXt-T的精度。在ImageNet数据集上,InceptionNeXt展现出卓越性能,推动了计算机视觉领域的发展。研究团队提供了多种规模的预训练模型,适用于不同的应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号