Project Icon

caformer_b36.sail_in22k_ft_in1k

CAFormer图像分类模型基于MetaFormer设计

CAFormer基于MetaFormer架构,支持由ImageNet-22k预训练和ImageNet-1k微调,旨在增强图像识别能力。拥有98.8M参数与23.2 GMACs,擅长处理224x224像素图像。通过TIMM库访问,这款图像分类/特征骨干模型能够提升图像理解及特征提取,适用于图像分类、特征提取和图像嵌入等多种视觉任务。

poolformer_m36.sail_in1k - MetaFormer架构的PoolFormer图像分类与特征提取模型
GithubHuggingfaceImageNet-1kMetaFormerPoolFormertimm图像分类开源项目模型
poolformer_m36.sail_in1k是一个基于MetaFormer架构的PoolFormer图像分类模型,在ImageNet-1k数据集上训练。该模型拥有5620万参数,支持图像分类、特征图提取和图像嵌入等功能。它能高效处理224x224大小的图像,在保持性能的同时降低计算复杂度。研究人员和开发者可通过timm库轻松使用这一预训练模型,应用于多种计算机视觉任务。
metaformer - 一系列视觉基线模型
CAFormerConvFormerGithubIdentityFormerMetaFormerRandFormer开源项目
MetaFormer项目推出多款视觉基线模型,包括IdentityFormer、RandFormer、ConvFormer和CAFormer。这些模型在ImageNet-1K数据集上表现出色,根据不同的token mixer架构,如身份映射、全局随机混合、可分离深度卷积和自注意机制,在224x224分辨率下的Top-1准确率均超过80%。特别是CAFormer,在无外部数据或蒸馏的条件下,达到85.5%的准确率记录。这些模型已集成到timm库中,方便应用和扩展。
visformer_small.in1k - 视觉友好型Transformer图像分类模型
GithubHuggingfaceImageNet-1kVisformertimm图像分类开源项目模型深度学习模型
visformer_small.in1k是基于Visformer架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用视觉友好的Transformer设计,平衡了高效性和分类性能。它具有4020万参数,处理224x224尺寸图像,可用于分类任务和特征提取。研究者可通过timm库轻松使用此预训练模型进行图像分析和嵌入生成。
mit-b4 - 使用SegFormer预训练模型提升语义分割效率
GithubHugging FaceHuggingfaceImageNetSegFormerTransformer开源项目模型语义分割
此项目提供SegFormer的b4-sized预训练模型,具有分层Transformer和轻量级MLP解码头,在ADE20K和Cityscapes等基准上展现出色性能。经过ImageNet-1k预训练的SegFormer可用于下游任务微调,满足多种应用需求。用户可在[模型库](https://huggingface.co/models?other=segformer)中根据任务需求选择合适版本,优化图像分割效果。
cait_m36_384.fb_dist_in1k - CaiT图像分类模型:ImageNet-1k预训练的类注意力转换器
CaiTGithubHuggingfaceImageNet-1k图像分类图像转换器开源项目模型模型预训练
cait_m36_384.fb_dist_in1k是一个基于类注意力图像转换器(CaiT)的图像分类模型,由Facebook研究团队开发。该模型在ImageNet-1k数据集上进行预训练和蒸馏,包含2.712亿个参数,支持384x384像素的输入图像。通过timm库,它可以轻松应用于图像分类和特征提取等计算机视觉任务。
xcit_tiny_12_p8_224.fb_in1k - 跨协方差图像转换器实现图像分类与特征提取
GithubHuggingfaceImageNet-1kXCiT图像分类开源项目机器学习模型神经网络
基于XCiT(Cross-Covariance Image Transformer)架构开发的图像分类模型,在ImageNet-1k数据集上完成预训练。模型包含670万参数量,GMACs为4.8,支持224x224图像输入分辨率。通过跨协方差注意力机制实现图像特征表示,可用于图像分类和特征提取。模型已集成到timm库中,支持top-k分类预测和特征向量提取功能。
convnextv2_base.fcmae_ft_in22k_in1k - 多功能图像分类与特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNettimm图像分类开源项目模型预训练模型
ConvNeXt-V2是一款先进的图像分类模型,通过全卷积掩码自编码器框架(FCMAE)预训练,并在ImageNet-22k和ImageNet-1k数据集上微调。除图像分类外,该模型还可用于特征图提取和图像嵌入。拥有8870万参数,ConvNeXt-V2在ImageNet-1k验证集上实现86.74%的Top-1准确率。凭借在多项基准测试中的卓越表现,ConvNeXt-V2成为各类计算机视觉任务的优秀选择。
convnextv2_large.fcmae_ft_in22k_in1k - ConvNeXt-V2图像分类模型结合FCMAE预训练架构
ConvNeXt-V2GithubHuggingfaceImageNet图像分类开源项目模型模型比较深度学习
ConvNeXt-V2是一个大型图像分类模型,通过FCMAE框架预训练并在ImageNet数据集上微调。模型包含1.98亿参数,Top1准确率达87.26%,可用于图像分类、特征提取和嵌入等计算机视觉任务。其224x224的标准训练分辨率和多功能性使其成为视觉处理的实用选择。
convnextv2_huge.fcmae_ft_in22k_in1k_512 - ConvNeXt-V2高效的图像分类与特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNet图像分类开源项目模型模型预训练特征提取
ConvNeXt-V2模型在全卷积掩码自动编码器框架下进行预训练,并在ImageNet-22k和ImageNet-1k数据集上微调,提升了图像分类和特征提取的效率。模型拥有660.3M参数,处理512x512图像,适合复杂计算需求。支持图像分类、特征图提取和图像嵌入,确保高准确率和多样化应用,结合timm库简化操作,适用于研究和工业应用。
segformer-b5-finetuned-ade-640-640 - SegFormer-b5模型用于ADE20k数据集的语义分割
GithubHuggingfaceSegFormerTransformer图像处理开源项目模型深度学习语义分割
SegFormer-b5是一个针对ADE20k数据集640x640分辨率微调的语义分割模型。该模型采用层次化Transformer编码器和轻量级MLP解码头,在ADE20K等基准测试中表现优异。模型在ImageNet-1k预训练后,添加解码头并在目标数据集上微调,可应用于多种语义分割任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号