Project Icon

caformer_b36.sail_in22k_ft_in1k

CAFormer图像分类模型基于MetaFormer设计

CAFormer基于MetaFormer架构,支持由ImageNet-22k预训练和ImageNet-1k微调,旨在增强图像识别能力。拥有98.8M参数与23.2 GMACs,擅长处理224x224像素图像。通过TIMM库访问,这款图像分类/特征骨干模型能够提升图像理解及特征提取,适用于图像分类、特征提取和图像嵌入等多种视觉任务。

segformer-b5-finetuned-cityscapes-1024-1024 - SegFormer-b5模型在CityScapes数据集上微调的语义分割应用
GithubHuggingfaceSegFormerTransformer图像处理开源项目模型深度学习语义分割
SegFormer-b5是一个在CityScapes数据集上微调的语义分割模型。它结合层次化Transformer编码器和轻量级MLP解码头,在1024x1024分辨率下展现优秀性能。该模型经ImageNet-1k预训练后,通过添加解码头并在特定数据集微调,可应用于自动驾驶场景理解等多种语义分割任务。
mixer_b16_224.goog_in21k_ft_in1k - MLP-Mixer架构的ImageNet预训练模型实现图像分类与特征提取
GithubHuggingfaceImageNetMLP-Mixertimm图像分类开源项目模型神经网络
mixer_b16_224.goog_in21k_ft_in1k是一个基于MLP-Mixer架构的图像分类模型,在ImageNet-21k预训练后在ImageNet-1k微调。该模型拥有5990万参数,处理224x224图像输入,可用于图像分类和特征提取。项目提供了简洁的代码示例,展示了模型在图像分类和特征提取任务中的应用。这个模型为计算机视觉研究提供了有力工具。
mask2former-swin-large-cityscapes-semantic - Mask2Former大型语义分割模型 适用多种图像分割任务
GithubHuggingfaceMask2Former图像分割开源项目模型深度学习计算机视觉语义分割
Mask2Former是一款先进的语义分割模型,基于Swin骨干网络在Cityscapes数据集上训练。该模型采用统一的掩码预测方法,可同时处理实例、语义和全景分割任务。通过引入多尺度可变形注意力Transformer和带掩码注意力的Transformer解码器,Mask2Former在性能和效率上均超越了先前的最佳模型。它为研究人员和开发者提供了一个强大的工具,可用于各种图像分割应用。
convnext_base.fb_in22k_ft_in1k_384 - 高效的ConvNeXt图像分类解决方案
ConvNeXtGithubHuggingfaceImageNet图像分类开源项目模型模型对比特征提取
ConvNeXt图像分类模型经过ImageNet-22k的预训练和ImageNet-1k的微调,以384x384分辨率高效执行分类任务。拥有88.6M参数和45.2 GMACs,支持图像分类、特征提取和图像嵌入等功能。适用于多种机器学习任务,其高分辨率处理能力使其在深度学习领域具有良好表现。
inception_resnet_v2.tf_in1k - Inception-ResNet-v2架构的图像分类与特征提取模型
GithubHuggingfaceImageNet-1kinception_resnet_v2timm图像分类开源项目模型特征提取
inception_resnet_v2.tf_in1k是基于Inception-ResNet-v2架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有5580万参数,13.2 GMACs计算量,适用于299x299像素的输入图像。除图像分类外,该模型还支持特征图提取和图像嵌入功能。它在保持较低计算复杂度的同时提供高精度图像识别能力,适用于多种计算机视觉任务。
oneformer_ade20k_swin_tiny - 通过单一模型实现多任务图像分割的统一框架
GithubHuggingfaceOneFormer图像分割实例分割开源项目模型深度学习语义分割
OneFormer通过单一架构实现语义、实例和全景分割的统一处理。基于ADE20k数据集训练并采用Swin主干网络,这个紧凑型模型仅需一次训练即可完成多种图像分割任务。其独特的任务令牌机制实现了训练引导和推理动态化,为图像分割领域提供了高效的解决方案。
mask2former-swin-large-mapillary-vistas-panoptic - Mask2Former:集实例、语义和全景分割于一体的图像分割模型
GithubHuggingfaceMask2Former图像分割开源项目模型深度学习计算机视觉语义分割
Mask2Former是一个基于Swin主干网络的高级图像分割模型,在Mapillary Vistas数据集上训练用于全景分割。它通过预测掩码和标签集合,统一处理实例、语义和全景分割任务。该模型采用改进的Transformer架构和高效训练策略,性能和效率均优于先前的MaskFormer。Mask2Former为各类图像分割应用提供了强大支持,推动了计算机视觉技术的进步。
convnext_small.fb_in22k_ft_in1k_384 - ConvNeXt模型提升图像分类精度的预训练与微调方案
ConvNeXtGithubHuggingfaceImageNet图像分类开源项目模型模型比较特征提取
ConvNeXt是一款用于图像分类的模型,于ImageNet-22k数据集预训练,并在ImageNet-1k上微调。该模型拥有50.2百万参数和25.6 GMACs,支持384x384尺寸的图像处理。除了图像分类外,它还支持特征图和图像嵌入提取。凭借其优异的性能和高效的图像处理能力,ConvNeXt被广泛应用于复杂的图像识别任务。通过timm库可实现模型便捷的加载与应用,适用于各种研究与工程需求。
vit_base_patch16_224.augreg2_in21k_ft_in1k - 高性能Vision Transformer图像分类与特征提取模型
GithubHuggingfaceImageNetVision Transformerpytorch-image-modelstimm图像分类开源项目模型
该模型基于Vision Transformer架构,在ImageNet-21k上预训练并在ImageNet-1k上微调,采用额外的数据增强和正则化技术。适用于图像分类和特征提取,具有8660万参数,支持224x224输入尺寸。模型在性能和效率间取得平衡,可满足多样化的计算机视觉任务需求。
vit_small_r26_s32_384.augreg_in21k_ft_in1k - ResNet与Vision Transformer结合的图像分类模型解析
GithubHuggingfaceImageNetViTtimm图像分类增广正则化开源项目模型
该模型结合ResNet与Vision Transformer(ViT)的特点,专用于图像分类。最初在ImageNet-21k上训练,后在ImageNet-1k上微调,并在JAX中创建,由Ross Wightman移植到PyTorch环境中。模型采用了36.5M参数和27.7M激活,针对384x384图像进行了优化,通过增强和正则化技术提升了处理复杂图像任务的能力,适用于多种图像识别应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号