Project Icon

deit_small_patch16_224.fb_in1k

DeiT架构图像分类模型 基于ImageNet-1k训练的高效Transformer

DeiT小型模型是一种基于Transformer架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用注意力蒸馏技术,拥有2210万参数,适用于224x224像素图像输入。除图像分类外,它还可用于特征提取。模型通过timm库提供预训练权重,便于加载和推理。其数据效率和蒸馏技术使其在计算机视觉领域表现出色。

deit_base_patch16_224.fb_in1k - 基于Transformer架构的DeiT图像分类模型
DeiTGithubHuggingfaceImageNet-1k图像分类开源项目模型深度学习神经网络
deit_base_patch16_224.fb_in1k是一款基于Transformer架构的图像分类模型,在ImageNet-1k数据集上训练。该模型拥有8660万参数,支持224x224像素图像处理,可用于图像分类和嵌入向量生成。通过数据高效训练方法和注意力蒸馏技术,该模型在减少大规模数据依赖的同时保持了高性能。研究人员和开发者可以利用timm库轻松应用此模型进行推理或特征提取。
deit_tiny_patch16_224.fb_in1k - 高效数据处理的DeiT图像分类和特征提取模型
DeiTGithubHuggingfaceImageNetTransformertimm图像分类开源项目模型
DeiT图像分类模型经过在ImageNet-1k数据集上的训练,通过注意力机制提高数据处理效率。它的紧凑架构具有5.7百万参数和1.3 GMACs,适用于224x224像素图像,可用于图像分类和嵌入生成。此项目具备广泛的库支持,易于集成,是研究者获取高效图像处理能力的理想工具。
deit-small-patch16-224 - 数据高效的图像Transformer模型,用于精炼图像分类
DeiTGithubHuggingfaceImageNet-1kVision Transformer图像分类开源项目模型预训练
Data-efficient Image Transformer(DeiT)小型模型在ImageNet-1k上经过预训练和微调。该模型通过高效的预训练方法和识别精确的标签蒸馏技术实现了性能与效率的平衡。DeiT-small在ImageNet中实现79.9%的top-1准确率,支持PyTorch平台,适合图像分类任务,并可以通过ViTModel或ViTForImageClassification进行应用。
deit-tiny-patch16-224 - 高效小型视觉Transformer模型用于图像分类
DeiTGithubHuggingfaceImageNet图像分类图像处理开源项目模型深度学习
DeiT-tiny-patch16-224是一个在ImageNet-1k数据集上训练的高效视觉Transformer模型。该模型仅有5M参数,却在ImageNet top-1分类准确率上达到72.2%。它可处理224x224分辨率的图像输入,输出1000个ImageNet类别的预测结果,适用于各种图像分类任务。
deit-base-patch16-224 - DeiT高效视觉Transformer 创新图像分类模型
DeiTGithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习
DeiT是一种高效训练的视觉Transformer模型,在ImageNet-1k数据集上预训练和微调。采用创新的数据高效方法,以较少计算资源实现出色图像分类性能。支持224x224分辨率输入,Top-1准确率达81.8%。可直接用于图像分类或作为下游视觉任务的特征提取器。该模型在保持ViT架构优势的同时,显著提高了训练效率和分类精度。
deit_base_distilled_patch16_224.fb_in1k - DeiT图像分类模型 结合注意力蒸馏技术
DeiTGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
DeiT_base_distilled_patch16_224.fb_in1k是一个在ImageNet-1k数据集上训练的图像分类模型,采用注意力蒸馏技术优化性能。模型包含8730万个参数,支持224x224像素图像输入。除图像分类外,还可用于特征提取。通过timm库可轻松调用,适用于图像分类和嵌入向量提取。该模型在精度和效率方面表现均衡,可广泛应用于计算机视觉任务。
deit-base-distilled-patch16-224 - DeiT模型通过蒸馏技术提升ImageNet图像分类性能
DeiTGithubHuggingfaceImageNet图像分类开源项目模型蒸馏视觉Transformer
DeiT-base-distilled-patch16-224是一种基于Vision Transformer的图像分类模型,通过蒸馏技术从CNN教师模型中学习。该模型在ImageNet-1k数据集上进行预训练和微调,在224x224分辨率下实现83.4%的top-1准确率。模型采用16x16图像块嵌入和蒸馏token,适用于多种计算机视觉任务,尤其在图像分类领域表现优异。
deit3_base_patch16_224.fb_in1k - ImageNet-1k图像分类与嵌入的DeiT-III解决方案
DeiT-IIIGithubHuggingfaceImage EmbeddingsImageNet-1k图像分类开源项目模型模型比较
DeiT-III是一款经过ImageNet-1k训练的图像分类和嵌入模型,拥有86.6M参数以及17.6 GMACs。该模型可以进行图像特征提取与多任务处理,适用于各种视觉应用。对于图形识别及计算机视觉项目的从业者而言,其为ViT提供了一个新的升级途径。
beit_base_patch16_224.in22k_ft_in22k_in1k - BEiT模型:基于ImageNet数据集的高效图像分类与特征提取
BEiTGithubHuggingfaceImageNettimm图像分类开源项目模型预训练模型
beit_base_patch16_224.in22k_ft_in22k_in1k是一个强大的图像分类模型,基于BEiT架构设计。该模型在ImageNet-22k数据集上进行自监督掩码图像建模预训练,并在ImageNet-22k和ImageNet-1k上微调,具有8650万个参数。它支持224x224像素的输入图像,可用于图像分类和特征提取,为计算机视觉任务提供高效解决方案。
beit-base-patch16-224 - 基于BERT架构的图像分类模型BEiT在视觉特征学习的应用
BEiTGithubHuggingfaceImageNet图像分类图像预处理开源项目机器学习模型
BEiT是一个Vision Transformer架构的图像分类模型,通过在ImageNet-21k数据集进行自监督预训练并在ImageNet-1k上微调而来。模型采用BERT风格的预训练方法处理224x224分辨率图像,结合16x16像素块嵌入和视觉token预测机制,实现了图像特征的提取。其特点是使用相对位置编码替代绝对位置编码,并通过patch特征平均池化完成分类任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号