Project Icon

deit_small_patch16_224.fb_in1k

DeiT架构图像分类模型 基于ImageNet-1k训练的高效Transformer

DeiT小型模型是一种基于Transformer架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用注意力蒸馏技术,拥有2210万参数,适用于224x224像素图像输入。除图像分类外,它还可用于特征提取。模型通过timm库提供预训练权重,便于加载和推理。其数据效率和蒸馏技术使其在计算机视觉领域表现出色。

vit_small_patch14_reg4_dinov2.lvd142m - 基于自监督学习的视觉Transformer用于图像特征提取和分类
GithubHuggingfaceVision Transformer图像分类图像特征开源项目模型深度学习自监督学习
该Vision Transformer (ViT) 图像特征模型通过自监督学习进行预训练,基于LVD-142M数据集并采用DINOv2方法。模型专为图像分类和特征提取设计,包含22.1M参数和29.6 GMAC的运算能力。其注册方法增强了处理518x518像素图像的效果,DINOv2技术有助于无监督视觉特征学习。此模型在图像嵌入应用中表现优异,并支持多种视觉分析与研究。用户可使用timm库简单调用和部署模型,适合多种机器学习场景。
vit-large-patch32-384 - 基于Transformer架构的大规模图像分类模型
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一个基于Transformer架构的大型视觉模型,在ImageNet-21k数据集上预训练,并在ImageNet 2012数据集上微调。模型采用图像分块和序列化处理方法,支持384x384分辨率的输入。ViT在多个图像分类基准测试中表现优异,可用于图像分类、特征提取等计算机视觉任务。该模型支持PyTorch框架,适合研究人员和开发者使用。
vit_base_patch16_224.dino - 自监督训练的ViT模型实现高效图像特征提取
DINOGithubHuggingfaceVision Transformer图像分类开源项目模型特征提取自监督学习
vit_base_patch16_224.dino是一个基于Vision Transformer架构的图像特征提取模型。该模型采用自监督DINO方法在ImageNet-1k数据集上预训练,可用于图像分类和特征提取。模型包含8580万参数,支持224x224像素的输入图像。通过timm库,研究人员可以便捷地将其应用于多种计算机视觉任务,深入探索自监督学习在视觉领域的潜力。
vit_base_patch16_224.augreg_in21k - 基于ImageNet-21k训练的Vision Transformer图像分类模型
GithubHuggingfaceImageNet-21kVision Transformertimm图像分类开源项目模型模型嵌入
这是一个基于Vision Transformer架构的图像分类模型,在ImageNet-21k数据集上训练。模型采用额外的数据增强和正则化技术,参数量1.026亿,处理224x224像素图像。除图像分类外,还可用作特征提取器生成图像嵌入。基于PyTorch实现,提供简洁API,适用于多种计算机视觉任务。模型由Google Research开发,Ross Wightman将其移植到PyTorch。
vit-base-patch32-384 - Vision Transformer图像分类模型支持大规模数据训练
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer(ViT)是一款图像分类模型,采用Transformer编码器架构,通过将图像分割为固定大小patch进行处理。模型在包含1400万张图像的ImageNet-21k数据集完成预训练,并在ImageNet-1k数据集上进行384x384分辨率的微调。提供预训练权重,可直接应用于图像分类或迁移学习任务。
vit-base-patch32-224-in21k - Vision Transformer模型在2100万图像数据集上预训练
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一种基于transformer架构的视觉模型,在ImageNet-21k数据集上预训练。该模型将图像转换为固定大小的patch序列,通过线性嵌入和位置编码输入transformer编码器。ViT可应用于图像分类等多种视觉任务,只需在预训练编码器上添加任务特定层。模型在224x224分辨率下训练,批量大小为4096,在多项图像分类基准测试中展现出优秀性能。
vit-large-patch16-384 - Vision Transformer大模型,提升高分辨率图像分类表现
GithubHuggingfaceImageNetVision Transformertransformer图像分类开源项目模型深度学习
项目提供了预训练于ImageNet-21k并在ImageNet 2012上微调的Vision Transformer(ViT)大模型。ViT通过将图像分为固定大小的补丁并使用Transformer编码器进行解析,提升了分类精度和特征提取能力,支持高分辨率视觉识别任务并兼容PyTorch使用。
vit_base_patch32_224.augreg_in21k_ft_in1k - 基于ViT架构的图像分类模型,兼容PyTorch
GithubHuggingfaceImageNetViTVision Transformerstimm图像分类开源项目模型
ViT图像分类模型在ImageNet-21k上训练并在ImageNet-1k上微调,采用数据增强和正则化,适用于图像识别和特征提取。模型包含88.2M参数,通过PyTorch实现,支持多种应用场景。
vit-base-patch16-384 - Vision Transformer:基于图像分块的高效视觉识别模型
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一种基于Transformer架构的视觉识别模型,在ImageNet-21k上进行预训练,并在ImageNet 2012上微调。模型采用图像分块和序列化处理方法,有效处理384x384分辨率的图像。ViT在多个图像分类基准测试中表现优异,适用于各种计算机视觉任务。该预训练模型为研究人员和开发者提供了快速开发高精度图像识别应用的基础。
vit_base_patch32_clip_384.openai_ft_in12k_in1k - 采用ViT技术的视觉Transformer模型
Fine-tuningGithubHuggingfaceVision Transformertimm图像分类开源项目模型预训练
这款视觉Transformer图像分类模型由OpenAI基于WIT-400M数据集使用CLIP技术预训练,并经过ImageNet-12k和ImageNet-1k数据集微调。作为一种强大的图像分类和嵌入模型,其参数量达88.3M,计算量为12.7 GMACs,设计用于384x384图像。支持通过`timm`库接口调用,满足多种视觉任务需求,在图像识别和分析领域表现出稳定性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号