Project Icon

eca_halonext26ts.c1_in1k

基于ResNeXt架构的HaloNet图像分类模型

eca_halonext26ts.c1_in1k是一种基于ResNeXt架构的HaloNet图像分类模型,采用高效通道注意力机制。该模型在timm库中使用ImageNet-1k数据集训练,参数量为10.8M,GMACs为2.4,适用于256x256图像。它结合了ResNet Strikes Back的训练方法和局部自注意力机制,可用于图像分类、特征图提取和图像嵌入等任务。通过灵活的BYOB架构,该模型在保持计算效率的同时提供了良好的性能和可定制性。

models - 探索最先进的机器学习模型与技术
GithubONNX Model Zoo图像分类对象检测开源项目机器学习模型语言处理
ONNX Model Zoo是一个开源平台,汇集了各种预训练且处于技术前沿的机器学习模型,涵盖计算机视觉、自然语言处理等多个领域。旨在为开发者、研究人员和技术爱好者提供高效实用的AI工具,加速机器学习技术的应用和发展。此外,ONNX Model Zoo支持多种框架和工具,通过共同的文件格式和操作集,促进了AI开发的灵活性和互操作性。平台以开放性和社区驱动的特性为己任,含有诸如图像分类、对象检测等主要模型,并通过简易接口及高级工具满足不同用户需求,使其既适应初学者也满足专业人士的需求。
unilm - Unilm项目实现跨任务、语言和模态的大规模自监督预训练
Foundation ModelsGithubLarge-scaleMulti-modalTorchScale开源项目预训练
Unilm项目跨越100多种语言及包括语言、视觉、语音及其交互的多种模态,专注于基础模型和普适AI的研究。该项目已开发多种新型架构如DeepNet、Magneto,并通过稳定高效的训练方法增强模型的通用性和能力。此外,项目已发布关键技术如E5、BEiT-3,涵盖自然语言处理、机器翻译、文档AI及多模态AI等领域,为AI技术的前沿发展和实际应用做出了显著进展。
HALOs - 设计人类意识损失函数以改进大型语言模型的人类反馈对齐
ArchangelGithubHuman-Aware Loss FunctionsKTOLLM开源项目训练
该项目提供灵活的平台,用于设计和优化人类意识的损失函数,旨在大规模地与离线人类反馈对齐大型语言模型。通过模块化数据加载和训练架构,支持包括KTO、PPO等多种损失策略,并提供基于GPT-4的开放式评估功能。建议阅读项目的技术报告和完整论文以获取更多信息。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
helm - 全面评估语言模型和文本图像模型的开源框架
GithubHEIMHELMStanford CRFM开源项目文本生成图像模型语言模型评估
HELM是一个开源的评估框架,用于全面分析语言模型和文本到图像模型的性能。该框架提供标准化数据集、统一模型接口和多维度评估指标。HELM不仅关注准确性,还评估效率、偏见和毒性等方面。对于文本到图像模型,HELM涵盖12个关键评估维度,包括图像质量、推理能力和多语言支持。研究人员可借助HELM深入了解模型的优势和潜在风险。
awesome-huge-models - 大型AI模型最新动态与开源资源汇总
AI训练GithubLLMdeep learning模型大模型开源开源项目
详尽介绍大型AI语言模型最新进展及开源资源,包括训练代码、数据集和预训练权重。收录Baichuan、Falcon、OpenLLaMA等模型,并关注开源与分布式训练框架如PyTorch和XLA生态。提供全面资源链接,帮助研究人员和开发者了解当前AI模型的最前沿动态。
gen-efficientnet-pytorch - 泛型EfficientNet和其它高效PyTorch模型的实现
EfficientNetGithubMixNetMobileNetPyTorch开源项目模型
本项目实现了EfficientNet、MixNet、MobileNetV3等多种高效模型,利用通用架构定义支持多种计算高效的神经网络。所有模型均基于MobileNet V1/V2块序列设计,并支持字符串化架构配置。请注意,该项目现已停止维护,推荐使用`timm`库获取更多功能和权重兼容的模型。
corenet - 用于训练多任务深度神经网络的工具库
CoreNetGithub开源项目模型训练深度学习神经网络计算机视觉
CoreNet是一款多功能深度神经网络工具库,支持训练各种规模的标准和创新模型。它适用于基础模型、计算机视觉和自然语言处理等多个领域。该项目提供可复现的训练方案、预训练模型权重和针对Apple Silicon优化的MLX示例,有助于推动AI研究和应用的发展。
efficientvit - EfficientViT多尺度线性注意力用于高分辨率密集预测
EfficientViTGithub图像分割开源项目模型优化深度学习计算机视觉
EfficientViT是一种新型ViT模型,专注于高效处理高分辨率密集预测视觉任务。其核心是轻量级多尺度线性注意力模块,通过硬件友好操作实现全局感受野和多尺度学习。该项目提供图像分类、语义分割和SAM等应用的预训练模型,在性能和效率间达到平衡,适合GPU部署和TensorRT优化。
Awesome-Backbones - 图像分类的主干网络库及其使用教程
Awesome-BackbonesGithubPyTorch图像分类开源项目模型训练预训练权重
提供丰富的图像分类主干网络,包括TinyViT、DeiT3、EdgeNeXt、RevVisionTransformer等,兼容Pytorch 1.7.1+及Python 3.6+。项目包含环境搭建、数据集准备、训练和评估的详细教程,适合科研和实际应用,提升图像分类模型性能。提供快速开始指南和预训练权重,帮助开发者高效部署与测试。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号