Project Icon

eva02_base_patch14_448.mim_in22k_ft_in22k_in1k

EVA02视觉Transformer的图像分类与特征提取模型

EVA02是一款基于视觉Transformer架构的图像分类和特征提取模型。它结合了平均池化、SwiGLU和旋转位置嵌入技术,在ImageNet-22k数据集上进行预训练并在ImageNet-1k上微调。兼容timm库,以确保在不同设备上的一致性和高效性,广泛适用于多种图像分类和特征提取任务。

EVA - 推进大规模视觉表示学习的前沿
CLIPEVAGithub多模态学习开源项目自监督学习视觉表示
EVA是北京智源人工智能研究院开发的视觉表示学习模型系列。它包括多个子项目,如EVA-01和EVA-CLIP,致力于探索大规模掩码视觉表示学习的极限和改进CLIP训练技术。这些模型在主流平台上提供,为计算机视觉研究提供了有力支持。EVA项目涵盖基础模型、自监督学习和多模态学习等前沿领域。
vit_large_patch16_384.augreg_in21k_ft_in1k - 使用ImageNet数据集进行图像分类的Vision Transformer模型
GithubHuggingfaceVision Transformer图像分类开源项目模型模型比较特征提取预训练模型
该Vision Transformer模型专用于图像分类,最初在ImageNet-21k上进行扩展和正则化训练,并在ImageNet-1k上进行微调。由原作者使用JAX开发,后移植至PyTorch框架。模型的显著特点包括支持384x384图像尺寸,参数量达到304.7M,提升图像识别的准确性。该模型简化了图像分类和图像嵌入生成的过程。高效的数据增强和正则化策略进一步提升了模型性能,是计算机视觉研究与应用的有效工具。
vit_base_patch32_clip_448.laion2b_ft_in12k_in1k - LAION-2B预训练的ViT图像分类模型
GithubHuggingfaceImageNetLAION-2Btimm图像分类开源项目模型视觉Transformer
这是一个基于Vision Transformer架构的图像分类模型,在LAION-2B数据集预训练后在ImageNet-12k和ImageNet-1k上微调。模型包含8830万参数,支持448x448输入图像,可用于图像分类和特征提取。该模型通过timm库实现,提供简单使用示例,采用Apache-2.0许可。
beit-base-patch16-224-pt22k-ft22k - BEiT 基于Transformer的自监督图像分类模型
BEiTGithubHuggingfaceImageNet图像分类开源项目模型自监督学习视觉转换器
BEiT是一种基于Transformer的图像分类模型,在ImageNet-22k数据集上进行自监督预训练和微调。它采用掩码预测目标和相对位置编码,有效学习图像表示。该模型在多个图像分类基准测试中表现出色,为计算机视觉任务提供了强大的基础。
vit-base-patch16-384 - Vision Transformer:基于图像分块的高效视觉识别模型
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一种基于Transformer架构的视觉识别模型,在ImageNet-21k上进行预训练,并在ImageNet 2012上微调。模型采用图像分块和序列化处理方法,有效处理384x384分辨率的图像。ViT在多个图像分类基准测试中表现优异,适用于各种计算机视觉任务。该预训练模型为研究人员和开发者提供了快速开发高精度图像识别应用的基础。
vit_large_patch14_reg4_dinov2.lvd142m - 带寄存器的视觉Transformer模型用于图像特征提取
DINOv2GithubHuggingfaceVision Transformertimm图像分类开源项目模型特征提取
vit_large_patch14_reg4_dinov2.lvd142m是一个带寄存器的视觉Transformer模型,在LVD-142M数据集上使用自监督DINOv2方法预训练。该模型具有3.044亿参数,可处理518x518大小的图像,适用于图像分类和特征提取任务。它结合了ViT和DINOv2技术,为计算机视觉应用提供了高效的解决方案。
vit_base_patch8_224.dino - 将自监督DINO方法应用于视觉变换器以增强图像特征提取能力
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型特征提取自监督学习
该项目利用Vision Transformer (ViT) 和自监督DINO方法进行图像特征提取,支持图像分类和嵌入应用。模型在ImageNet-1k数据集上进行了预训练,具有85.8M参数,能够处理224 x 224分辨率的图像。由于其参数利用效率高,该模型在大规模数据集上表现良好,适合精确特征提取的视觉任务,增强图像识别及分析能力。通过`timm`库可轻松实现模型调用和图像处理,满足多种计算机视觉应用需求。
swin-base-patch4-window12-384 - 高效图像分类的Swin Transformer视觉模型
GithubHuggingfaceSwin Transformer图像分类层次特征图开源项目模型自注意力机制视觉转换器
Swin Transformer是一款视觉Transformer,通过使用层级特征图和移窗技术,进行高效图像分类。模型在ImageNet-1k数据集上以384x384分辨率训练,具备线性计算复杂度,使其适用于图像分类和密集识别任务。模型可用于原始图像分类,或者在模型集中寻找细化版本,适合处理计算密集型任务。
vit-base-patch16-224-cifar10 - 视觉Transformer在CIFAR10上的图像分类优化
CIFAR10GithubHuggingfaceVision Transformer图像分类开源项目模型模型微调深度学习
Vision Transformer (ViT) 模型经过ImageNet-21k数据集的预训练,并在CIFAR10数据集上微调,适用于224x224分辨率的图像分类任务。采用16x16像素的固定大小图像补丁进行特征提取,为下游任务提供了有效支持。在GitHub上访问相关代码,了解如何将该技术应用到各种项目中。
deit-base-distilled-patch16-224 - DeiT模型通过蒸馏技术提升ImageNet图像分类性能
DeiTGithubHuggingfaceImageNet图像分类开源项目模型蒸馏视觉Transformer
DeiT-base-distilled-patch16-224是一种基于Vision Transformer的图像分类模型,通过蒸馏技术从CNN教师模型中学习。该模型在ImageNet-1k数据集上进行预训练和微调,在224x224分辨率下实现83.4%的top-1准确率。模型采用16x16图像块嵌入和蒸馏token,适用于多种计算机视觉任务,尤其在图像分类领域表现优异。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号