Project Icon

eva02_base_patch14_448.mim_in22k_ft_in22k_in1k

EVA02视觉Transformer的图像分类与特征提取模型

EVA02是一款基于视觉Transformer架构的图像分类和特征提取模型。它结合了平均池化、SwiGLU和旋转位置嵌入技术,在ImageNet-22k数据集上进行预训练并在ImageNet-1k上微调。兼容timm库,以确保在不同设备上的一致性和高效性,广泛适用于多种图像分类和特征提取任务。

dinov2 - 通过无监督学习构建强大视觉特征的先进方法
DINOv2GithubVision Transformer开源项目自监督学习视觉特征计算机视觉
DINOv2是一种先进的无监督视觉特征学习方法,在1.42亿张未标注图像上预训练后生成高性能、鲁棒的通用视觉特征。这些特征可直接应用于多种计算机视觉任务,仅需简单线性分类器即可实现优异效果。DINOv2提供多种预训练模型,包括带寄存器的变体,在ImageNet等基准测试中表现卓越。
efficientvit - EfficientViT多尺度线性注意力用于高分辨率密集预测
EfficientViTGithub图像分割开源项目模型优化深度学习计算机视觉
EfficientViT是一种新型ViT模型,专注于高效处理高分辨率密集预测视觉任务。其核心是轻量级多尺度线性注意力模块,通过硬件友好操作实现全局感受野和多尺度学习。该项目提供图像分类、语义分割和SAM等应用的预训练模型,在性能和效率间达到平衡,适合GPU部署和TensorRT优化。
vit-pytorch - 通过PyTorch实现多种视觉Transformer变体
GithubPytorchVision Transformer卷积神经网络图像分类开源项目深度学习
本项目展示了如何在PyTorch中实现和使用视觉Transformer(ViT)模型,包括Simple ViT、NaViT、Distillation、Deep ViT等多种变体。利用基于Transformer架构的简单编码器,本项目在视觉分类任务中达到了先进水平。用户可以通过pip进行安装,并参考提供的代码示例进行模型加载和预测。项目还支持高级功能如知识蒸馏、变分图像尺寸训练和深度模型优化,适用于多种视觉任务场景。
EasyCV - 基于PyTorch的全能计算机视觉工具箱,支持自监督学习和Transformer模型
EasyCVGithubPyTorch图像分类开源项目目标检测自监督学习
EasyCV是基于PyTorch的全能计算机视觉工具箱,专注于自监督学习、Transformer模型和主要视觉任务,包括图像分类、度量学习、目标检测和姿态估计。该工具箱提供了最先进的自监督算法如SimCLR、MoCO V2、Swav、DINO和基于掩码图像建模的MAE。它拥有简单综合的推理接口,并支持多种预训练模型。EasyCV支持多GPU和多工作者训练,利用DALI优化数据处理,使用TorchAccelerator和fp16加速训练,并通过PAI-Blade优化推理性能。
DIVA - 扩散模型辅助CLIP增强视觉理解能力
AI视觉CLIPDIVAGithub开源项目扩散模型迁移学习
DIVA是一种创新方法,利用扩散模型作为视觉助手优化CLIP表示。通过文本到图像扩散模型的生成反馈,DIVA无需配对文本数据即可提升CLIP视觉能力。在MMVP-VLM细粒度视觉评估基准上,DIVA显著提升了CLIP性能,同时保持了其在29个图像分类和检索基准上的强大零样本能力。这为增强视觉语言模型的视觉理解开辟了新途径。
Vision-RWKV - 基于RWKV架构的高效视觉感知模型
GithubVision-RWKV图像处理开源项目深度学习神经网络计算机视觉
Vision-RWKV是一种基于RWKV架构的视觉感知模型。该模型可高效处理高分辨率图像,具有全局感受野,并通过大规模数据集预训练实现良好扩展性。在图像分类任务中,Vision-RWKV性能超越ViT模型;在密集预测任务中,它以更低计算量和更快速度胜过基于窗口的ViT,并与全局注意力ViT相当。Vision-RWKV展现出成为多种视觉任务中ViT替代方案的潜力。
hiera - 简洁高效的分层视觉Transformer模型
GithubHieraMAE预训练图像识别开源项目视觉Transformer视频识别
Hiera是一种分层视觉Transformer模型,在图像和视频任务中表现出色,同时保持高效推理。该模型简化了现有Transformer的复杂模块,并通过MAE预训练学习空间偏置,实现了简洁高效的架构。项目提供了模型库、推理示例和基准测试脚本,支持通过PyTorch Hub和Hugging Face Hub使用预训练模型。
MDT - MDTv2图像合成模型:更快收敛和卓越性能
GithubMasked Diffusion Transformer人工智能图像合成开源项目深度学习计算机视觉
MDTv2是一种先进的深度学习图像合成模型,在ImageNet数据集上实现了1.58的FID分数,创造新的业界标准。该模型采用掩码潜在建模技术,提高了图像语义理解能力,学习速度比先前模型快10倍以上。MDTv2在图像生成质量和训练效率方面都有显著提升,为计算机视觉和人工智能领域带来了新的可能性。
VILA - 创新的视觉语言模型预训练方法
GithubVILA多模态开源项目视觉语言模型量化预训练
VILA是一种新型视觉语言模型,采用大规模交错图像-文本数据预训练,增强了视频和多图像理解能力。通过AWQ 4位量化和TinyChat框架,VILA可部署到边缘设备。该模型在视频推理、上下文学习和视觉思维链等方面表现出色,并在多项基准测试中获得了优异成绩。项目完全开源,包括训练和评估代码、数据集以及模型检查点。
VisionLLaMA - 基于LLaMA的统一视觉模型,为图像生成和理解设立新基准
GithubVisionLLaMA图像理解图像生成开源项目计算机视觉预训练模型
VisionLLaMA是一个基于LLaMA架构的统一视觉Transformer模型,专为处理2D图像而设计。该模型提供平面和金字塔两种形式,适用于广泛的视觉任务,包括图像感知和生成。通过各种预训练范式的广泛评估,VisionLLaMA在多项图像生成和理解任务中展现出卓越性能,超越了现有最先进的视觉Transformer模型,为计算机视觉领域提供了新的基准。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号