Project Icon

mobilenetv3_small_050.lamb_in1k

探索资源有效利用的MobileNet-v3图像分类模型

该项目展示了在ImageNet-1k上训练的MobileNet-v3图像分类模型,强调其在资源受限环境中的适用性。使用LAMB优化器和EMA权重平均化,该模型参照ResNet Strikes Back设计,通过简化预处理流程,支持图像分类、特征提取和图像嵌入等多种深度学习任务,增强模型性能。

mobilevitv2_075.cvnets_in1k - MobileViT-v2:高效的移动视觉变换器图像分类解决方案
GithubHuggingfaceImageNet-1kMobileViT-v2Separable Self-attention图像分类开源项目模型特征提取
MobileViT-v2是一个高效的移动视觉变换器模型,利用分离自注意力机制优化了图像分类与特征提取。经过ImageNet-1k数据集训练,该模型适配多种计算机视觉任务。模型规格包括2.9M参数和1.1 GMAC,支持256x256图像输入。借助timm库,模型可轻松集成至移动设备的视觉处理应用中。
tinynet_a.in1k - 轻量级图像分类模型 TinyNet 实现高效特征提取
GithubHuggingfaceImageNetTinyNet图像分类开源项目模型深度学习神经网络
tinynet_a.in1k是基于ImageNet-1k数据集训练的轻量级图像分类模型。它仅有6.2M参数和0.3 GMACs,适用于192x192像素的图像处理。该模型可用于图像分类、特征图提取和图像嵌入,在资源受限环境中表现出色。通过timm库,开发者可以方便地使用预训练模型进行各种计算机视觉任务。tinynet_a.in1k在保持高效性能的同时,为图像处理应用提供了一个轻量化解决方案。
ese_vovnet19b_dw.ra_in1k - VoVNet-v2轻量级图像分类模型 兼顾性能与能效
GithubHuggingfaceImageNetVoVNettimm图像分类开源项目模型特征提取
ese_vovnet19b_dw.ra_in1k是基于VoVNet-v2架构的图像分类模型,在ImageNet-1k数据集上使用RandAugment技术预训练。该模型参数量为6.5M,计算量为1.3 GMACs,适用于多种图像分类任务。除了高效的分类功能,它还可作为特征提取骨干网络,支持特征图提取和图像嵌入。模型在保持高性能的同时,优化了能耗和GPU计算效率,是一个兼顾性能与效率的轻量级选择。
tf_efficientnet_lite0.in1k - 轻量级EfficientNet-Lite模型实现高效图像分类与特征提取
EfficientNet-LiteGithubHuggingfaceImageNet-1k图像分类开源项目模型模型对比特征提取
EfficientNet-Lite0是一款专为高效图像分类和特征提取设计的模型,经过ImageNet-1k训练。该模型已被迁移至PyTorch,并利用timm库进行图像嵌入和特征图提取。在4.7M参数和0.4 GMACs的架构下,实现了高效性能与计算资源节约,适合作为多种视觉任务的解决方案。
efficientnetv2_rw_m.agc_in1k - EfficientNetV2模型:图像分类与多功能特征提取
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型模型使用
EfficientNetV2是一个在timm库中实现的高效图像分类模型。通过使用以ResNet Strikes Back为基础的训练策略和SGD优化器(带Nesterov动量),结合自适应梯度剪裁,模型在ImageNet-1k数据集上进行训练。这一架构轻量且强大,支持包括图像分类、特征提取和图像嵌入的多种图像处理任务。
tinynet_e.in1k - TinyNet模型在ImageNet-1k上的应用与性能分析
GithubHuggingfaceImageNet-1ktimmtinynet_e.in1k图像分类开源项目模型特征提取
TinyNet是一个旨在优化图像分类和特征提取的模型,通过调整分辨率、深度和宽度,在ImageNet-1k上进行训练。模型参数量为2.0M,并具有低计算负荷。提供简便的代码示例以支持图像分类、特征图提取和图像嵌入,可用于多种图像处理场景。同时,通过timm库探索其指标表现,更深入了解其在神经信息处理中的应用。
ese_vovnet39b.ra_in1k - 高效实时的VoVNet-v2图像分类解决方案
GithubHuggingfaceImageNet-1kVoVNet-v2timm图像分类开源项目模型特征提取
VoVNet-v2是一种预训练于ImageNet-1k的图像分类模型,含高效计算和低能耗优点,并采用RandAugment优化。适用于特征骨干网络,支持图像分类、特征提取和图像嵌入。其关键性能包括24.6M参数、7.1 GMACs等。通过`timm`库,用户可以实现高效的图像分类和特征提取。模型使用ResNet Strikes Back的训练方案,提高了准确度和应用多样性。
mobilevit-small - 高效轻量的移动端视觉转换器
GithubHuggingfaceImageNetMobileViT图像分类开源项目机器学习模型神经网络
MobileViT-small是一款轻量级视觉模型,在ImageNet-1k数据集上预训练。该模型融合MobileNetV2结构和transformer块,实现高效全局图像处理。仅5.6M参数量,却在ImageNet上获得78.4%的top-1准确率。适用于移动设备的图像分类等任务,平衡了性能与效率。
efficientnetv2_rw_t.ra2_in1k - EfficientNet-v2的模型特点与应用分析
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
EfficientNet-v2是一个专注于图像分类的高效模型,采用RandAugment策略在ImageNet-1k数据集上训练,具有参数少、训练快的特点。通过timm库实现,支持特征图提取和图像嵌入等多种功能。其结构设计为强大的特征骨干提供了基础。
lcnet_050.ra2_in1k - LCNet轻量级神经网络模型实现高效图像分类和特征提取
GithubHuggingfaceImageNet-1kLCNettimm图像分类开源项目模型特征提取
lcnet_050.ra2_in1k是基于LCNet架构的轻量级图像分类模型,在ImageNet-1k数据集上训练。模型采用RandAugment增强和RMSProp优化,参数量仅1.9M,支持224x224输入。可用于图像分类、特征提取和嵌入生成,适合CPU运行,为计算资源有限的场景提供高效解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号