Project Icon

mobilenetv3_small_075.lamb_in1k

移动网络V3小型模型的图像分类与优化方法

该项目采用MobileNet-v3模型进行图像分类,在ImageNet-1k数据集上通过LAMB优化器和RMSProp优化器进行微调。利用指数衰减学习率调度和EMA权重平均,提高性能表现。模型在特征提取和图像嵌入方面表现出色,适合开发轻量级视觉识别应用。

MobileSAM - 高效轻量化图像分割模型,适用于移动设备
AI模型GithubMobileSAM图像分割开源项目深度学习计算机视觉
MobileSAM是一种轻量级图像分割模型,专为移动应用优化。它保持了与原始SAM相当的性能,同时大幅减少了模型参数和推理时间。通过将ViT-H编码器替换为TinyViT,MobileSAM将参数量从615M降至9.66M,推理速度从456ms提升至12ms。该项目提供完整的训练和使用文档,支持ONNX导出,可轻松集成到现有SAM项目中。
resnet50_gn.a1h_in1k - ResNet-B架构图像分类模型结合先进训练方法
GithubHuggingfaceImageNetResNettimm图像分类开源项目模型神经网络
resnet50_gn.a1h_in1k是基于ResNet-B架构的图像分类模型,集成了多项先进训练技术。模型采用ReLU激活函数、单层7x7卷积与池化、1x1卷积快捷连接下采样等结构。在ImageNet-1k数据集上训练时,应用了LAMB优化器、增强型dropout、随机深度和RandAugment等方法。模型参数量为25.6M,GMACs为4.1,训练输入尺寸为224x224,测试输入尺寸为288x288。该模型可应用于图像分类、特征提取和图像嵌入等多种计算机视觉任务。
res2net50_14w_8s.in1k - Res2Net架构的多尺度骨干网络实现高效图像分类
GithubHuggingfaceImageNetRes2Nettimm图像分类开源项目模型深度学习模型
res2net50_14w_8s.in1k是基于Res2Net架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用多尺度ResNet结构,具有2510万参数,计算复杂度为4.2 GMACs。除图像分类外,还可作为特征提取器应用于其他计算机视觉任务。模型接受224x224像素的输入图像,并提供API支持图像分类、特征图提取和图像嵌入等功能。其高效的多尺度结构使其在保持准确性的同时降低了计算成本。
ghostnet_100.in1k - GhostNet轻量级图像分类模型实现高效特征提取
GhostNetGithubHuggingface图像分类开源项目模型深度学习特征提取神经网络
ghostnet_100.in1k是基于GhostNet架构的轻量级图像分类模型,在ImageNet-1k数据集上训练。该模型通过创新的特征生成方法,实现了高效的特征提取。模型参数量为5.2M,GMACs仅0.1,适用于224x224像素的图像输入。除图像分类外,还可作为特征提取器应用于其他计算机视觉任务。用户可通过timm库轻松加载和使用该模型。
convnextv2_tiny.fcmae_ft_in22k_in1k_384 - ConvNeXt-V2:精准高效的图像分类模型
ConvNeXt V2GithubHuggingfaceImageNet卷积网络图像分类开源项目模型自动编码器
ConvNeXt-V2 模型具备高效的图像分类能力,通过全卷积掩码自编码器架构进行预训练,并在 ImageNet-22k 和 ImageNet-1k 数据集上进行精调。该模型具备 28.6M 参数量、13.1 GMACs 计算量,支持 384x384 的图像尺寸。通过 timm 库使用,支持图像分类、特征图提取和图像嵌入等多种视觉任务。
MobileLLM - 轻量高效的移动设备语言模型
AI模型GithubMobileLLM开源项目深度学习神经网络语言模型
MobileLLM是一个针对移动设备优化的大型语言模型项目。该模型通过SwiGLU激活函数、深窄架构、嵌入共享和分组查询注意力等技术,在亿级参数规模下实现了高性能。MobileLLM在零样本常识推理任务中表现出色,不仅在125M和350M参数规模上超越了现有最先进模型,还成功扩展至600M、1B和1.5B参数规模,展示了其在移动设备应用中的潜力。
tf_efficientnet_b1.ns_jft_in1k - EfficientNet图像分类模型,无监督学习的图像标杆
EfficientNetGithubHuggingfaceJFT-300mPyTorch半监督学习图像分类开源项目模型
本项目是一个EfficientNet图像分类模型,通过Noisy Student半监督学习在ImageNet-1k和JFT-300m数据集上使用Tensorflow训练,并移植到PyTorch中。它可以执行图像分类、特征提取和嵌入生成。拥有仅7.8M参数和高计算效率,适合研究深度学习模型的缩放和性能优化。
imgclsmob - 深度学习卷积网络的研究与实现,涵盖多种框架和预训练模型
GithubMXNetPyTorchTensorFlowcomputer visiondeep learning开源项目
此存储库专注于计算机视觉领域的卷积网络研究,包含多种分类、分割、检测和姿态估计模型的实现,支持MXNet/Gluon、PyTorch、Chainer、Keras和TensorFlow等框架。提供了训练、评估和转换的脚本以及针对不同框架的PIP包,模型预训练于ImageNet、CIFAR-10/100、SVHN等数据集,能够自动加载预训练权重。
smol-vision - 前沿视觉模型优化与定制的实用技巧集锦
GithubONNX量化Smol Vision开源项目模型微调知识蒸馏视觉模型优化
smol-vision项目汇集了多种视觉模型优化技术,包括量化、ONNX转换、模型微调和知识蒸馏。项目提供了实用示例,展示如何使用Optimum优化目标检测模型、微调PaliGemma和Florence-2视觉语言模型,以及通过torch.compile加速基础模型。这些方法旨在帮助开发者提高模型性能、缩小规模和加快推理速度,使模型更好地适应各种硬件环境。
ml-fastvit - 高效混合视觉Transformer模型用于图像分类
FastViTGithub图像分类开源项目模型性能结构重参数化视觉Transformer
FastViT是一种采用结构重参数化技术的混合视觉Transformer模型。该模型在ImageNet-1K数据集上实现了准确率和延迟的良好平衡,提供多个变体以适应不同应用场景。FastViT在iPhone 12 Pro上的基准测试显示出优秀的移动端性能。项目开源了预训练模型、训练评估代码和使用文档。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号