Project Icon

mobilenetv3_small_075.lamb_in1k

移动网络V3小型模型的图像分类与优化方法

该项目采用MobileNet-v3模型进行图像分类,在ImageNet-1k数据集上通过LAMB优化器和RMSProp优化器进行微调。利用指数衰减学习率调度和EMA权重平均,提高性能表现。模型在特征提取和图像嵌入方面表现出色,适合开发轻量级视觉识别应用。

VMamba - 高效的线性时间复杂度视觉骨干网络
GithubVMamba图像处理开源项目深度学习神经网络计算机视觉
VMamba是一种创新的视觉骨干网络,将Mamba状态空间语言模型应用于计算机视觉。其核心是视觉状态空间块堆栈,结合2D选择性扫描模块,实现线性时间复杂度。VMamba在图像分类、目标检测和语义分割等多项视觉任务中表现出色,特别是在输入尺度扩展效率方面优于现有模型。项目提供多种规模的预训练模型,适用于各类视觉感知任务。
MambaVision - 高效且灵活的视觉骨干网络,适用于各种分辨率的图像处理
GithubHugging FaceMambaVision图像分类开源项目深度学习计算机视觉
MambaVision采用混合Mamba-Transformer架构,结合自注意力和混合块,实现了卓越的图像分类和特征提取效果。其创新的对称路径设计提升了全局上下文的建模能力,并提供多种预训练模型。MambaVision支持多种分辨率图像处理,适用于分类、检测和分割等任务。最新模型支持Hugging Face和pip包,详细信息见[官网](https://huggingface.co/collections/nvidia/mambavision-66943871a6b36c9e78b327d3)。
MambaOut - 高效视觉模型展示简洁架构卓越性能
GithubMambaOut图像分类开源项目深度学习神经网络计算机视觉
MambaOut是一种新型视觉模型架构,通过堆叠门控CNN块构建,无需使用复杂的状态空间模型。在ImageNet图像分类任务中,它的性能超越了现有的视觉Mamba模型,同时具有较低的参数量和计算复杂度。该项目提供了从轻量级MambaOut-Femto到大型MambaOut-Base的多个预训练模型,在准确率和效率间实现平衡。研究人员可利用提供的代码和教程复现结果或应用于自身任务。
TinyLlama - 3万亿token训练的小型1.1B参数语言模型
AI预训练GithubTinyLlama开源项目模型评估语言模型
TinyLlama是一个使用3万亿token预训练的1.1B参数语言模型。它与Llama 2架构兼容,可集成到现有Llama项目中。TinyLlama体积小巧,适用于计算和内存受限的场景。该项目开源了预训练和微调代码,具有高效的训练和推理性能。TinyLlama可应用于推测解码、边缘计算和实时对话等领域。
MobiLlama - 为资源受限设备提供高效的小型语言模型
GithubMobiLlama大语言模型小语言模型开源项目模型下载生成模型
MobiLlama项目提供一个高效的开源小型语言模型,适用于设备上处理、节能和低内存占用的需求。通过参数共享技术,MobiLlama从较大模型简化而来,降低了预训练和部署成本,实现了资源受限设备上高效处理语言任务。
models - 探索最先进的机器学习模型与技术
GithubONNX Model Zoo图像分类对象检测开源项目机器学习模型语言处理
ONNX Model Zoo是一个开源平台,汇集了各种预训练且处于技术前沿的机器学习模型,涵盖计算机视觉、自然语言处理等多个领域。旨在为开发者、研究人员和技术爱好者提供高效实用的AI工具,加速机器学习技术的应用和发展。此外,ONNX Model Zoo支持多种框架和工具,通过共同的文件格式和操作集,促进了AI开发的灵活性和互操作性。平台以开放性和社区驱动的特性为己任,含有诸如图像分类、对象检测等主要模型,并通过简易接口及高级工具满足不同用户需求,使其既适应初学者也满足专业人士的需求。
YOLOv5-Lite - 轻量级高性能目标检测模型的优化与部署
GithubYOLOv5-Liteablation实验开源项目性能优化模型比较部署
YOLOv5-Lite通过优化YOLOv5模型实现了轻量化、加速推理和简化部署。通过消融实验减少了Flops、内存占用和参数,并采用Shuffle Channel和YOLOv5 Head降低Channels。在Raspberry Pi 4B上输入320×320帧能达到至少10+ FPS。该项目提供各种测试模型和对比结果,展示在多种硬件平台上的性能,并包含详细的教程和下载链接。
MNN - 高效轻量的深度学习框架,支持多设备推理和训练
GithubMNN开源项目推理引擎深度学习框架轻量级高性能
MNN是一个高效轻量的深度学习框架,支持设备上的推理和训练。已被阿里巴巴30多个应用集成,覆盖直播、短视频、搜索推荐等70多种场景。MNN适用于嵌入式设备,支持TensorFlow、Caffe、ONNX等多种模型格式,并优化了ARM和x64 CPU及多种GPU的计算性能。通过MNN Workbench,用户可以下载预训练模型、进行可视化训练并一键部署到设备上。
Bunny - 轻量高效多模态模型支持高分辨率图像分析
AI模型BunnyGithub多模态模型开源项目视觉语言模型轻量级模型
Bunny是一个轻量高效的多模态模型家族,集成多种视觉编码器和语言骨干网络。该项目通过优化训练数据提升小规模模型性能,其中Bunny-Llama-3-8B-V模型支持1152x1152分辨率图像处理,在多项视觉语言任务中表现优异。Bunny为开发者提供了灵活的多模态AI解决方案。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号