Project Icon

mobilenetv4_conv_small.e2400_r224_in1k

MobileNet-V4图像分类模型简介

MobileNetV4是一个利用ImageNet-1k数据集训练的图像分类模型,具有3.8M参数和0.2 GMACs的复杂度。该模型由timm库优化,使用了与MobileNet-V4论文一致的超参数。其训练和测试图像尺寸分别为224x224和256x256,适用于移动平台。更多信息可在PyTorch Image Models和相关论文中找到。

inception_v4.tf_in1k - 面向图像分类的Inception-v4预训练模型
GithubHuggingfaceImageNet-1kInception-v4图像分类开源项目模型深度学习神经网络
Inception-v4是一个在ImageNet-1k数据集上预训练的深度学习模型,参数量为4270万,支持299x299图像输入。通过timm库可实现图像分类、特征图提取和图像嵌入等核心功能。该模型从TensorFlow移植至PyTorch,适用于计算机视觉领域的各类图像处理任务。
efficientnet_b1.ft_in1k - 基于ImageNet-1k微调的EfficientNet图像分类模型
EfficientNetGithubHuggingfaceImageNet-1kPyTorch图像分类开源项目模型特征图提取
EfficientNet图像分类模型已在ImageNet-1k上进行微调,适用于PyTorch。该模型参数为7.8M,支持特征图提取和图像嵌入,可用作高效的图像分类工具。
fbnetv3_b.ra2_in1k - FBNet-v3轻量级图像分类模型支持多种应用场景
FBNet-v3GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
fbnetv3_b.ra2_in1k是基于FBNet-v3架构的轻量级图像分类模型。该模型在ImageNet-1k数据集上训练,使用RandAugment数据增强和EMA权重平均等技术。模型参数仅8.6M,GMAC为0.4,适合移动设备部署。支持图像分类、特征图提取和图像嵌入等应用,可用于多种计算机视觉任务。
ese_vovnet19b_dw.ra_in1k - VoVNet-v2轻量级图像分类模型 兼顾性能与能效
GithubHuggingfaceImageNetVoVNettimm图像分类开源项目模型特征提取
ese_vovnet19b_dw.ra_in1k是基于VoVNet-v2架构的图像分类模型,在ImageNet-1k数据集上使用RandAugment技术预训练。该模型参数量为6.5M,计算量为1.3 GMACs,适用于多种图像分类任务。除了高效的分类功能,它还可作为特征提取骨干网络,支持特征图提取和图像嵌入。模型在保持高性能的同时,优化了能耗和GPU计算效率,是一个兼顾性能与效率的轻量级选择。
tf_efficientnetv2_m.in21k_ft_in1k - EfficientNetV2的图片识别与特征提取
EfficientNet-v2GithubHuggingface图像分类图像嵌入开源项目模型深度学习特征提取
EfficientNetV2模型在ImageNet-21k数据集上预训练,并在ImageNet-1k上微调,最初使用TensorFlow构建,由Ross Wightman移植至PyTorch。其参数量为54.1M,能够在不同分辨率下实现精确的图像识别,并支持通过timm库执行图像分类、特征提取和嵌入生成等多任务。
efficientnet_b4.ra2_in1k - EfficientNet B4图像分类模型 ImageNet-1k数据集训练
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型深度学习
efficientnet_b4.ra2_in1k是基于EfficientNet架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用RandAugment RA2增强方法,使用RMSProp优化器,具有1930万参数和3.1 GMACs计算量。支持320x320训练图像和384x384测试图像,可用于图像分类、特征提取和嵌入等任务,为计算机视觉领域提供高效解决方案。
efficientnetv2_rw_m.agc_in1k - EfficientNetV2模型:图像分类与多功能特征提取
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型模型使用
EfficientNetV2是一个在timm库中实现的高效图像分类模型。通过使用以ResNet Strikes Back为基础的训练策略和SGD优化器(带Nesterov动量),结合自适应梯度剪裁,模型在ImageNet-1k数据集上进行训练。这一架构轻量且强大,支持包括图像分类、特征提取和图像嵌入的多种图像处理任务。
convnextv2_tiny.fcmae_ft_in22k_in1k_384 - ConvNeXt-V2:精准高效的图像分类模型
ConvNeXt V2GithubHuggingfaceImageNet卷积网络图像分类开源项目模型自动编码器
ConvNeXt-V2 模型具备高效的图像分类能力,通过全卷积掩码自编码器架构进行预训练,并在 ImageNet-22k 和 ImageNet-1k 数据集上进行精调。该模型具备 28.6M 参数量、13.1 GMACs 计算量,支持 384x384 的图像尺寸。通过 timm 库使用,支持图像分类、特征图提取和图像嵌入等多种视觉任务。
vgg19_bn.tv_in1k - VGG19架构的ImageNet预训练图像分类模型
GithubHuggingfaceImageNet-1kVGGtimm图像分类开源项目模型特征提取
vgg19_bn.tv_in1k是一个在ImageNet-1k数据集上预训练的VGG19模型,拥有1.437亿参数。该模型适用于图像分类、特征提取和嵌入生成等多种计算机视觉任务。通过timm库,用户可以方便地加载和使用这个模型,实现高精度的图像识别功能。模型在保持较高计算效率的同时,还提供了多种使用方式,如图像分类、特征图提取和图像嵌入等。
efficientnet_lite0.ra_in1k - 轻量级EfficientNet模型用于图像分类和特征提取
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型深度学习
efficientnet_lite0.ra_in1k是一个在ImageNet-1k数据集上训练的轻量级图像分类模型。它使用RandAugment数据增强和RMSProp优化器,仅有4.7M参数和0.4 GMACs,适合资源受限环境。该模型支持图像分类、特征图提取和图像嵌入,通过timm库实现,提供简洁API接口,便于快速部署。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号