Project Icon

rexnet_150.nav_in1k

高效的图像识别与特征提取

ReXNet是一款在ImageNet-1k数据集上预训练的图像分类模型,具有9.7M参数和0.9 GMACs,专为224x224尺寸图像设计。在timm库中实现模型调用,支持图像分类、特征地图提取及嵌入计算,堪称参数量与准确率之间的理想平衡,适用于深度学习研究和开发。

sebotnet33ts_256.a1h_in1k - 结合ResNet与自注意力的高性能图像分类模型
BotNetGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型深度学习
sebotnet33ts_256.a1h_in1k是一个融合ResNet架构和BotNet设计的图像分类模型,整合了Squeeze-and-Excitation通道注意力机制。该模型在ImageNet-1k数据集上训练,通过timm库实现。它采用LAMB优化器、强化的dropout和随机深度技术,以及余弦学习率调度。模型提供灵活的配置选项,包括块/阶段布局和注意力层等,适用于图像分类和特征提取任务。其平衡了性能和训练效率,为计算机视觉领域提供了实用的解决方案。
efficientnetv2_rw_m.agc_in1k - EfficientNetV2模型:图像分类与多功能特征提取
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型模型使用
EfficientNetV2是一个在timm库中实现的高效图像分类模型。通过使用以ResNet Strikes Back为基础的训练策略和SGD优化器(带Nesterov动量),结合自适应梯度剪裁,模型在ImageNet-1k数据集上进行训练。这一架构轻量且强大,支持包括图像分类、特征提取和图像嵌入的多种图像处理任务。
resnet101.a1h_in1k - ResNet-B架构图像分类模型 支持多样化特征提取
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习预训练模型
resnet101.a1h_in1k是基于ResNet-B架构的图像分类模型,在ImageNet-1k数据集上训练。模型采用ReLU激活函数、7x7卷积和池化层、1x1卷积短路下采样等结构。支持图像分类、特征图提取和图像嵌入功能,参数量44.5M,224x224输入下GMAC为7.8。在ImageNet验证集上Top-1准确率82.8%,Top-5准确率96.32%。
pnasnet5large.tf_in1k - PNASNet大规模图像分类与特征提取模型
GithubHuggingfaceImageNet-1kPNasNet图像分类开源项目模型深度学习特征提取
pnasnet5large.tf_in1k是基于Progressive Neural Architecture Search技术开发的图像分类模型,在ImageNet-1k数据集上训练而成。该模型拥有8610万参数,计算量为25.0 GMACs,支持331x331像素的图像输入。它不仅可用于图像分类,还能进行特征图提取和图像嵌入。研究人员和开发者可通过timm库轻松调用此预训练模型,提高图像处理效率。
convnextv2_huge.fcmae_ft_in22k_in1k_512 - ConvNeXt-V2高效的图像分类与特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNet图像分类开源项目模型模型预训练特征提取
ConvNeXt-V2模型在全卷积掩码自动编码器框架下进行预训练,并在ImageNet-22k和ImageNet-1k数据集上微调,提升了图像分类和特征提取的效率。模型拥有660.3M参数,处理512x512图像,适合复杂计算需求。支持图像分类、特征图提取和图像嵌入,确保高准确率和多样化应用,结合timm库简化操作,适用于研究和工业应用。
fbnetc_100.rmsp_in1k - FBNetC-100:轻量级移动设备图像分类模型
FBNetGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型神经网络架构搜索
fbnetc_100.rmsp_in1k是基于FBNet架构的轻量级图像分类模型,在ImageNet-1k数据集上训练。该模型仅有5.6M参数和0.4 GMACs,适用于224x224图像输入,专为移动设备优化。通过timm库,可轻松实现图像分类、特征图提取和图像嵌入等功能。模型采用RMSProp优化器和指数衰减学习率,平衡了性能和效率。
convnext_tiny.in12k_ft_in1k - ConvNeXt微型模型基于ImageNet-12k预训练和ImageNet-1k微调
ConvNeXtGithubHuggingfaceImageNettimm图像分类开源项目模型预训练模型
ConvNeXt微型图像分类模型在ImageNet-12k数据集上预训练,并在ImageNet-1k上微调。模型采用最新ConvNeXt架构,参数量28.59M,GMACs 4.47,激活量13.44M。224x224输入时Top-1准确率84.186%,384x384输入时达85.118%。适用于图像分类、特征提取和图像嵌入等计算机视觉任务。
convnextv2_tiny.fcmae_ft_in1k - ConvNeXt-V2轻量级图像分类和特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型预训练模型
convnextv2_tiny.fcmae_ft_in1k是基于ConvNeXt-V2架构的轻量级图像分类模型。该模型通过全卷积masked自编码器预训练,在ImageNet-1k数据集微调,拥有2860万参数。它可用于图像分类、特征图提取和图像嵌入,在ImageNet验证集上Top-1准确率达82.92%。这是一个在性能和效率间取得平衡的优秀选择。
convnextv2_tiny.fcmae_ft_in22k_in1k_384 - ConvNeXt-V2:精准高效的图像分类模型
ConvNeXt V2GithubHuggingfaceImageNet卷积网络图像分类开源项目模型自动编码器
ConvNeXt-V2 模型具备高效的图像分类能力,通过全卷积掩码自编码器架构进行预训练,并在 ImageNet-22k 和 ImageNet-1k 数据集上进行精调。该模型具备 28.6M 参数量、13.1 GMACs 计算量,支持 384x384 的图像尺寸。通过 timm 库使用,支持图像分类、特征图提取和图像嵌入等多种视觉任务。
convmixer_768_32.in1k - ConvMixer架构的高效图像分类与特征提取模型
GithubHuggingfacetimm卷积神经网络图像分类开源项目模型深度学习特征提取
convmixer_768_32.in1k是基于ConvMixer架构的图像分类模型,在ImageNet-1k数据集上训练完成。该模型拥有2110万参数,支持224x224像素的图像输入。除图像分类外,它还可用于生成图像嵌入。通过timm库,开发者能方便地加载预训练模型进行推理。这一设计简洁高效,为计算机视觉应用提供了实用的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号