Project Icon

swin_large_patch4_window7_224.ms_in22k_ft_in1k

分层视觉Transformer模型 基于ImageNet-22k预训练和ImageNet-1k微调

swin_large_patch4_window7_224.ms_in22k_ft_in1k是基于Swin Transformer架构的图像分类模型。该模型在ImageNet-22k上预训练,ImageNet-1k上微调,拥有1.965亿参数,34.5 GMACs计算量。它支持224x224输入图像,适用于图像分类、特征提取和图像嵌入。模型采用分层结构和移位窗口机制,平衡了计算效率和性能。

dla102.in1k - 深层聚合架构的图像分类模型 支持多种计算机视觉应用
GithubHuggingfaceImageNettimm图像分类开源项目模型深度层聚合特征提取
dla102.in1k是基于深层聚合架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有3330万参数,支持224x224像素输入。除图像分类外,还可用于特征图提取和图像嵌入。通过timm库可方便地调用此预训练模型,为计算机视觉应用提供灵活基础。模型在图像分类、特征提取等任务中表现出色,适用于多种视觉分析场景。
res2net101_26w_4s.in1k - Res2Net101多尺度骨干网络实现高效图像分类和特征提取
GithubHuggingfaceImageNet-1kRes2Nettimm图像分类开源项目模型特征提取
res2net101_26w_4s.in1k是基于Res2Net架构的图像分类模型,通过ImageNet-1k数据集训练而成。该模型采用多尺度设计,在图像分类和特征提取方面表现优异。它拥有4520万个参数,适用于224x224尺寸的图像处理。除图像分类外,还支持特征图提取和图像嵌入功能。研究人员和开发者可通过timm库便捷地将此模型应用于多种计算机视觉任务。
res2net50_14w_8s.in1k - Res2Net架构的多尺度骨干网络实现高效图像分类
GithubHuggingfaceImageNetRes2Nettimm图像分类开源项目模型深度学习模型
res2net50_14w_8s.in1k是基于Res2Net架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用多尺度ResNet结构,具有2510万参数,计算复杂度为4.2 GMACs。除图像分类外,还可作为特征提取器应用于其他计算机视觉任务。模型接受224x224像素的输入图像,并提供API支持图像分类、特征图提取和图像嵌入等功能。其高效的多尺度结构使其在保持准确性的同时降低了计算成本。
convnext_small.fb_in22k_ft_in1k_384 - ConvNeXt模型提升图像分类精度的预训练与微调方案
ConvNeXtGithubHuggingfaceImageNet图像分类开源项目模型模型比较特征提取
ConvNeXt是一款用于图像分类的模型,于ImageNet-22k数据集预训练,并在ImageNet-1k上微调。该模型拥有50.2百万参数和25.6 GMACs,支持384x384尺寸的图像处理。除了图像分类外,它还支持特征图和图像嵌入提取。凭借其优异的性能和高效的图像处理能力,ConvNeXt被广泛应用于复杂的图像识别任务。通过timm库可实现模型便捷的加载与应用,适用于各种研究与工程需求。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
ml-fastvit - 高效混合视觉Transformer模型用于图像分类
FastViTGithub图像分类开源项目模型性能结构重参数化视觉Transformer
FastViT是一种采用结构重参数化技术的混合视觉Transformer模型。该模型在ImageNet-1K数据集上实现了准确率和延迟的良好平衡,提供多个变体以适应不同应用场景。FastViT在iPhone 12 Pro上的基准测试显示出优秀的移动端性能。项目开源了预训练模型、训练评估代码和使用文档。
ViTamin - 推动计算机视觉进入新时代的可扩展视觉语言模型
GithubViTamin图像处理开源项目深度学习视觉语言模型计算机视觉
ViTamin是一系列可扩展的视觉语言模型,在图像分类、开放词汇检测和分割等任务上取得突破。以436M参数量在DataComp-1B数据集训练,实现82.9%的ImageNet零样本准确率。在7个开放词汇分割基准测试中创新纪录,并提升大型多模态模型能力。获timm和OpenCLIP官方支持,提供简单接口。ViTamin为计算机视觉领域带来新的可能性。
ms-swift - 支持300+模型训练和轻量级微调的高效框架
GithubLLMModelScopeSWIFT多模态模型开源项目轻量级训练
SWIFT是一款高效框架,支持超过300个大语言模型和50多个多模态大模型的训练、推理、评估和部署。它集成了NEFTune、LoRA+和LLaMA-PRO等先进技术,适用于研究和生产环境。框架还提供了易用的Gradio web-ui界面和详细文档,非常适合初学者和资深开发者使用。最新版本增加了对多种前沿模型和加速算法的支持,适用于广泛的应用场景。
swift - 轻量级基础架构,专为深度学习开发者打造的训练与推理框架
GithubSWIFT在线工具多模态大模型开源项目模型培训深度学习
SWIFT平台支持超过300种大型语言模型与50多种多模态模型的训练、微调和部署。提供NEFTune、LoRA+、LLaMA-PRO等先进的训练技术及适配器库,针对各种研发和生产环境。同时,平台提供Gradio web-ui及深度学习课程助力初学者快速上手。
efficientvit - EfficientViT多尺度线性注意力用于高分辨率密集预测
EfficientViTGithub图像分割开源项目模型优化深度学习计算机视觉
EfficientViT是一种新型ViT模型,专注于高效处理高分辨率密集预测视觉任务。其核心是轻量级多尺度线性注意力模块,通过硬件友好操作实现全局感受野和多尺度学习。该项目提供图像分类、语义分割和SAM等应用的预训练模型,在性能和效率间达到平衡,适合GPU部署和TensorRT优化。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号