Project Icon

swin_large_patch4_window7_224.ms_in22k_ft_in1k

分层视觉Transformer模型 基于ImageNet-22k预训练和ImageNet-1k微调

swin_large_patch4_window7_224.ms_in22k_ft_in1k是基于Swin Transformer架构的图像分类模型。该模型在ImageNet-22k上预训练,ImageNet-1k上微调,拥有1.965亿参数,34.5 GMACs计算量。它支持224x224输入图像,适用于图像分类、特征提取和图像嵌入。模型采用分层结构和移位窗口机制,平衡了计算效率和性能。

xcit_tiny_12_p8_224.fb_in1k - 跨协方差图像转换器实现图像分类与特征提取
GithubHuggingfaceImageNet-1kXCiT图像分类开源项目机器学习模型神经网络
基于XCiT(Cross-Covariance Image Transformer)架构开发的图像分类模型,在ImageNet-1k数据集上完成预训练。模型包含670万参数量,GMACs为4.8,支持224x224图像输入分辨率。通过跨协方差注意力机制实现图像特征表示,可用于图像分类和特征提取。模型已集成到timm库中,支持top-k分类预测和特征向量提取功能。
twins_svt_large.in1k - Twins-SVT模型适用于图像分类的创新Transformer架构
GithubHuggingfaceImageNet-1kTwins-SVTVision Transformerstimm图像分类开源项目模型
Twins-SVT是一个利用空间注意力机制的图像分类模型,在ImageNet-1k上训练,具备99.3M参数及15.1 GMACs。通过timm库调用,能有效用于图像识别与特征嵌入工作。
vit_small_patch14_reg4_dinov2.lvd142m - 基于自监督学习的视觉Transformer用于图像特征提取和分类
GithubHuggingfaceVision Transformer图像分类图像特征开源项目模型深度学习自监督学习
该Vision Transformer (ViT) 图像特征模型通过自监督学习进行预训练,基于LVD-142M数据集并采用DINOv2方法。模型专为图像分类和特征提取设计,包含22.1M参数和29.6 GMAC的运算能力。其注册方法增强了处理518x518像素图像的效果,DINOv2技术有助于无监督视觉特征学习。此模型在图像嵌入应用中表现优异,并支持多种视觉分析与研究。用户可使用timm库简单调用和部署模型,适合多种机器学习场景。
eva02_large_patch14_448.mim_m38m_ft_in22k_in1k - EVA02大型视觉模型在ImageNet达到90.054%分类准确率
EVA02GithubHuggingfaceImageNet图像分类开源项目模型深度学习神经网络
EVA02_large_patch14_448是一个基于视觉Transformer架构的图像处理模型,通过在Merged-38M数据集预训练和ImageNet数据集微调,在图像分类任务中达到90.054%的准确率。模型整合了均值池化、位置编码等技术,支持图像分类和特征提取应用。
vit_tiny_patch16_384.augreg_in21k_ft_in1k - ViT-Tiny 轻量级视觉转换器模型实现图像分类与特征提取
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型深度学习
ViT-Tiny是一款轻量级视觉转换器模型,专为图像分类和特征提取而设计。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了先进的数据增强和正则化技术。模型仅有5.8M参数,能处理384x384尺寸的图像,通过timm库可轻松加载用于推理或进一步微调。ViT-Tiny在保持高性能的同时,大幅降低了计算资源需求,适合各类图像识别应用场景。
beit_base_patch16_384.in22k_ft_in22k_in1k - 高效的BEiT自监督图像分类与嵌入模型
BEiTGithubHuggingfaceImageNet图像分类开源项目模型自监督学习视觉Transformer
BEiT图像分类模型在ImageNet-22k上通过DALL-E dVAE自监督掩码图像建模进行训练,并在ImageNet-22k和ImageNet-1k上进行微调。特点包括易于实现图像分类和生成图像嵌入,具有86.7百万参数,支持384x384图像。模型适合通过timm库高效调用,适用于多种计算机视觉应用。
vit-small-patch16-224 - Google开发的轻量级视觉Transformer模型用于高效图像分类
GithubHuggingfaceImageNetVision Transformerpytorch-image-modelssafetensors图像分类开源项目模型
vit-small-patch16-224是Google开发的轻量级视觉Transformer模型,针对高效图像分类任务进行了优化。该模型由社区成员从timm仓库转换并上传至Hugging Face平台。它与ViT-base模型具有相同的使用方式,特别适合计算资源有限的应用场景。模型在ImageNet数据集上经过训练,可用于各种计算机视觉任务,如图像识别和分类。相比ViT-base,它具有更小的模型尺寸和更快的推理速度,同时保持了良好的性能表现。需要注意的是,模型的safetensors版本要求torch 2.0或更高版本的运行环境。
vit_small_patch16_224.dino - DINO训练的小型Vision Transformer图像特征模型
GithubHuggingfaceVision Transformertimm图像分类开源项目模型特征提取自监督学习
vit_small_patch16_224.dino是一个采用DINO自监督方法训练的小型Vision Transformer模型。该模型拥有2170万参数,支持224x224像素图像输入,可用于图像分类和特征提取。通过timm库可快速部署,在ImageNet-1k数据集预训练后,为多种计算机视觉任务提供高质量的特征表示。
deit_base_distilled_patch16_224.fb_in1k - DeiT图像分类模型 结合注意力蒸馏技术
DeiTGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
DeiT_base_distilled_patch16_224.fb_in1k是一个在ImageNet-1k数据集上训练的图像分类模型,采用注意力蒸馏技术优化性能。模型包含8730万个参数,支持224x224像素图像输入。除图像分类外,还可用于特征提取。通过timm库可轻松调用,适用于图像分类和嵌入向量提取。该模型在精度和效率方面表现均衡,可广泛应用于计算机视觉任务。
deit_tiny_patch16_224.fb_in1k - 高效数据处理的DeiT图像分类和特征提取模型
DeiTGithubHuggingfaceImageNetTransformertimm图像分类开源项目模型
DeiT图像分类模型经过在ImageNet-1k数据集上的训练,通过注意力机制提高数据处理效率。它的紧凑架构具有5.7百万参数和1.3 GMACs,适用于224x224像素图像,可用于图像分类和嵌入生成。此项目具备广泛的库支持,易于集成,是研究者获取高效图像处理能力的理想工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号