Project Icon

tinynet_a.in1k

轻量级图像分类模型 TinyNet 实现高效特征提取

tinynet_a.in1k是基于ImageNet-1k数据集训练的轻量级图像分类模型。它仅有6.2M参数和0.3 GMACs,适用于192x192像素的图像处理。该模型可用于图像分类、特征图提取和图像嵌入,在资源受限环境中表现出色。通过timm库,开发者可以方便地使用预训练模型进行各种计算机视觉任务。tinynet_a.in1k在保持高效性能的同时,为图像处理应用提供了一个轻量化解决方案。

edgenext_small.usi_in1k - 轻量级CNN-Transformer混合模型EdgeNeXt用于移动视觉应用
EdgeNeXtGithubHuggingfaceImageNet图像分类开源项目模型特征提取神经网络
edgenext_small.usi_in1k是一款轻量级CNN-Transformer混合模型,针对移动视觉应用优化。该模型在ImageNet-1k数据集上训练,参数量为5.6M,GMACs为1.3。它支持图像分类、特征图提取和图像嵌入等功能,结合CNN和Transformer优势,在保持性能的同时减少计算资源需求,适合在资源受限的移动设备上运行。
efficientnet_b5.sw_in12k_ft_in1k - EfficientNet-加强版:适用于图像分类与特征提取的高效模型
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
EfficientNet模型结合了Swin Transformer的优化策略,经过ImageNet-12k预训练及ImageNet-1k微调,适用于图像识别、特征提取和嵌入生成。该模型使用AdamW优化器、梯度裁剪和余弦退火学习率等技术,提供高效的图像分类解决方案。
resnet50.a1_in1k - 基于ResNet-B架构的多功能图像分类模型
GithubHuggingfaceresnet50人工智能图像分类开源项目模型深度学习特征提取
resnet50.a1_in1k是基于ResNet-B架构的图像分类模型,在ImageNet-1k数据集上训练。模型采用ReLU激活函数、7x7卷积层和1x1卷积shortcut,使用LAMB优化器和BCE损失函数。它拥有2560万参数,可用于图像分类、特征提取和图像嵌入等任务。模型支持灵活的输入尺寸,在ImageNet验证集上实现了82.03%的Top-1准确率。
mobilenetv4_conv_medium.e500_r256_in1k - MobileNet-V4中档卷积模型:在保持较低参数量的同时提高图像分类效率
GithubHuggingfaceImageNet-1kMobileNet-V4timm图像分类开源项目模型特征提取
介绍了在ImageNet-1k数据集上训练的MobileNet-V4图像分类模型,其在维持高效分类精度的同时,降低了参数和计算量。模型支持特征提取和图像嵌入等应用场景,并与同类模型进行了广泛比较,适用于移动设备上的高效图像处理。
tiny-dnn - 轻量级C++14深度学习库,适用于嵌入式系统和物联网设备
C++14Githubtiny-dnn嵌入式系统开源项目深度学习物联网设备
tiny-dnn是一个为计算资源有限的嵌入式系统和物联网设备设计的C++14深度学习库。该库无需GPU,通过TBB线程和SSE/AVX向量化实现了高效性能,在13分钟内达到了98.8%的MNIST准确率。其便携的头文件形式使其易于集成,支持多种网络层类型、激活函数、损失函数和优化算法。tiny-dnn还能导入Caffe模型,适合学习和构建神经网络应用。
tiny-cuda-nn - 专注于快速训练和查询神经网络的开源框架
C++编程CUDAGPUGithubTiny CUDA Neural Networks开源项目深度学习
Tiny CUDA Neural Networks是一个紧凑、高效的开源框架,专注于快速训练和查询神经网络。它包含优化的多层感知器(MLP)和多分辨率哈希编码,并支持多种输入编码、损失函数和优化器。适用于NVIDIA GPU,通过C++/CUDA API和PyTorch扩展,助力高性能计算和深度学习项目。
inceptionnext - 结合Inception和ConvNeXt优势的高效图像识别模型
ConvNeXtGithubInceptionNeXt卷积神经网络图像分类开源项目深度学习
InceptionNeXt是一种创新的图像识别模型,融合了Inception的设计理念和ConvNeXt的架构。通过分解大型深度卷积核,该模型在速度和准确率方面取得了平衡,达到了ResNet-50的速度和ConvNeXt-T的精度。在ImageNet数据集上,InceptionNeXt展现出卓越性能,推动了计算机视觉领域的发展。研究团队提供了多种规模的预训练模型,适用于不同的应用场景。
ml-fastvit - 高效混合视觉Transformer模型用于图像分类
FastViTGithub图像分类开源项目模型性能结构重参数化视觉Transformer
FastViT是一种采用结构重参数化技术的混合视觉Transformer模型。该模型在ImageNet-1K数据集上实现了准确率和延迟的良好平衡,提供多个变体以适应不同应用场景。FastViT在iPhone 12 Pro上的基准测试显示出优秀的移动端性能。项目开源了预训练模型、训练评估代码和使用文档。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
TNN - 轻量级、高效能、多平台支持的开源深度学习框架
GithubTNN人工智能开源项目性能优化模型转换跨平台
TNN,腾讯优图实验室开源的神经网络推理框架,提供针对移动设备和X86/NV GPUs的高效性能优化。该框架已被QQ、微视等多款应用使用,并支持各大平台包括TensorFlow、Pytorch、MxNet。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号